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To my teachers, who taught me what I know;
to my wife, who spurred me on;

to my children, who give me hope.



Preface

This book grew out of a one quarter or one semester course I taught
at UCLA and at Washington University, and I have tried to retain
the informality of lecture notes. It is meant to be explanatory and
expository, rather than complete or definitive. My students were ad-
vanced undergraduates or beginning graduate students; the reader
should be fluent in undergraduate physics, but need know no astron-
omy or astrophysics.

The expression “high energy astrophysics” means different
things to different people; the contents therefore reflect my interests,
and the comments my opinions. My purpose is to describe the ingre-
dients, methods, and results of modern astrophysical phenomenology
and modelling. This is mostly the study of phenomena discovered
in the last quarter of a century, and involving compact or collapsed
objects. I specifically exclude cosmology, general relativity, and the
detailed theories of the interiors of degenerate stars, but review the
classical theory of stellar structure, which is the foundation of much
of modern astrophysics.

Most of this book presents a few basic results, principles, and
illustrations which all interested scientists should know. I hope these
will be useful for some time. The remainder expands upon their im-
plications and applications. Occasionally I try to offer a new point of
view or make a speculative suggestion, but the bulk of the text rests
upon firmer ground. In the last chapter I describe the understanding
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of some observed phenomena as it now exists.

I have cited the research literature only when it is of historical
interest, or when necessary to support a specific assertion. Instead,
I have provided citations to texts and to recent review articles. The
reader who plans to begin research in this field will need to turn to
the current literature; any attempt to survey it would soon become
obsolete.

In writing a book I learned how much they are abstracted from
earlier work. It is inevitable that a book on this subject draw on
two excellent recent works, Radiative Processes in Astrophysics, by
Rybicki and Lightman, and Black Holes, White Dwarfs, and Neutron
Stars, by Shapiro and Teukolsky, which I commend to the reader. I
have been more indirectly influenced by two older books, Structure
and Evolution of the Stars, by Schwarzschild, and Astrophysical Con-
cepts, by Harwit, whose scientific style was part of my education. I
owe them a debt also.

This book was largely written when I was a guest of the De-
partment of Nuclear Physics, The Weizmann Institute of Science,
Rehovot, Israel. I thank them for their hospitality, Washington Uni-
versity for a grant of sabbatical leave, and the United States-Israel
Educational Foundation for a Fulbright Lectureship. I also thank
T. Piran for comments, my editors for applying just the right amount
of pressure, and my wife for a careful reading of the manuscript.
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Chapter 1

Stars

1.1 Generalities

This book was not meant to be about stars. But stars are the most
familiar, best studied, and arguably most important objects in the
astrophysicist’s universe. They are therefore the building blocks of
many theories of more exotic objects. More fundamentally, the study
of stars is the study of the competition between gravity and pressure.
Astrophysics is distinguished from nearly all of the rest of physics by
the importance of gravity, so that an understanding of the principles
of stellar structure is necessary in order to understand most other
astronomical objects.

The study of stellar structure and evolution is an elaborate and
mature subject. The underlying physical principles are mostly well-
known, and have been developed in great detail. Powerful numerical
methods produce quantitative results for the properties and evolution
of stars. Numerous texts and a very extensive research literature doc-
ument this field. I refer the reader to three standard texts; although
not new they have aged very well, and it would be both pointless
and presumptuous to attempt to improve on them. Chandrasekhar
(1939) reviews the classical mathematical theory of stellar structure,
whose beginnings are now more than a century old. Schwarzschild
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2 Stars

(1958) presents a less mathematical description of the physical princi-
ples of stellar structure and evolution, with more attention to the ob-
served phenomenology. This is probably the best book for a general
introduction to the properties of stars and their governing physics.
I recommend it (supplemented by any of the numerous recent de-
scriptive astronomy books) as a reference for the physicist without
astronomical background. Clayton (1968) is particularly concerned
with processes of nucleosynthesis and thermonuclear energy genera-
tion.

There are still a number of outstanding problems in the theory
of ordinary stars. Many of these arise from a single area of theoretical
difficulty: the problem of quantitatively describing turbulent flows.
This problem arises in the formation of stars from diffuse gas clouds,
in stellar atmospheres, for rotating stars and accretion discs (which
may be thought of as the limiting case of rapidly rotating stars),
in interacting binary stars, in stars with surface abundance anoma-
lies, and in stellar collapse and explosion. If turbulent flows have a
material effect on the properties of a star, quantitative theory must
usually be supplemented by rough approximations, and confident cal-
culation becomes uncertain and approximate phenomenology. This
is even more true of the more exotic objects which are the subject of
this book.

The problems of turbulent flow appear in two distinct forms. In
the first form, a turbulent flow arises in an otherwise well-understood
configuration, and may even resemble the turbulent flows known to
hydrodynamicists; the problem is the calculation of some property,
usually an effective transport coefficient, of the flow. The most fa-
miliar example of this is turbulent convection in the solar surface
layers. In the second form, the initial or boundary conditions of a
flow are not known; it may not be turbulent in the hydrodynami-
cist’s sense of eddies or nonlinear wave motion on a broad range of

length scales, but quantitative calculation is still impossible. The



Phenomenology 3

formation of stars is an example of this kind of flow. A variety of
assumptions, approximations, and models, generally of uncertain va-
lidity and unknown accuracy, are used to study turbulent flows in
astrophysics.

This chapter on stars has two purposes. One is to illustrate some
of those physical principles of stellar structure which are useful in un-
derstanding stars and other astrophysical objects. The other is to
develop the kind of rough (often order-of-magnitude) estimates and
dimensional analysis which are widely used in modelling novel as-
trophysical phenomena. Some of this material follows Schwarzschild
(1958).

1.2 Phenomenology

Hundreds of years of observations of stars have produced an enor-
mous body of data and revealed a wide variety of phenomena which
are discussed in numerous texts and monographs and a voluminous
research literature. Here we will summarize only the tiny fraction of
those data essential to the astrophysicist who wishes to use stars in
models of high energy astrophysical phenomena.

The luminosities and surface temperatures of stars are often de-
scribed by their place on a Hertzsprung-Russell diagram, such as that
shown in Figure 1.1. In this theoretician’s version the abscissa is the
stellar effective surface temperature T,, defined as the temperature
of a black body which radiates the same power per unit area as the
actual stellar surface; the ordinate is the stellar photon luminosity in

033 erg/sec. There are also

units of the Solar luminosity Lg = 3.9 x 1
observers’ versions in which the abscissa is a “color index,” a directly
observable measure of the spectrum of the emitted radiation, and the
ordinate may be the absolute or apparent stellar magnitude in some

observable part of the spectrum. Accurate conversion between these
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Figure 1.1. Hertzsprung-Russell diagram.

two versions requires a quantitative knowledge of the spectrum of
emitted radiation, which is approximately (but not exactly) that of
a black body.

Most stars are found to lie on a narrow strip called the main
sequence. These stars (occasionally referred to as dwarves) produce
energy by the thermonuclear transmutation of hydrogen into helium
near their centers. Their positions along the main sequence are deter-
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mined by their masses, which vary monotonically from about 30M¢
(where the solar mass Mg = 2 x 1033 gm) at the upper left to 0.1M
in the lower right. The Sun lies on the main sequence near its middle.

Stars found above and to the right of the main sequence are
called giants and supergiants; their higher luminosities (and their
names) are accounted for by large radii, ranging in extreme cases
up to 10'* cm, about 1000 times that of the Sun. These stars
have exhausted the hydrogen at their centers and produce energy by
thermonuclear reactions in shells close to, but outside, their centers.
Stars of nearly equal ages (such as the members of a single cluster
of stars, formed nearly simultaneously) will be distributed along a
narrow track in the giant and supergiant region, a track whose form
reflects their complex evolutionary path. Stars of a broad range of
ages, such as the totality of stars in the solar neighborhood, will
mostly be found on the main sequence; those in the giant and su-
pergiant regions will be broadly distributed rather than lying on a
narrow track. There are no sharp distinctions among main sequence
(dwarf) stars, giants, and supergiants, and intermediate cases are
found.

Degenerate (traditionally called white) dwarves are faint, dense
stars in whose interiors the electrons are Fermi-degenerate, resem-
bling the state of an ideal metal or metallic liquid. They gener-
ally produce negligible thermonuclear energy, having converted es-
sentially all their hydrogen (and probably also their helium) to heav-
ier elements. Their meager luminosity is supplied by their thermal
energy content, possibly augmented by the latent heat of crystal-
lization, the gravitational energy released by the sedimentation of
their heavier elements, and other minor sources. They cool steadily
as these energy sources are exhausted. Degenerate dwarves move to
the lower right along a track parallel to lines of constant radius as
they cool. Their radii depend on their masses (roughly as their re-
ciprocals), but because their masses are believed to span a moderate
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range (perhaps 0.4Mg to 1.2Mg) they all lie in a strip of moderate
width. These masses are less than those which these stars had when
young, but the amount of mass lost is controversial and may range
from a few percent of to nearly all the initial mass. It is not known
whether the mass in the degenerate dwarf stage is a monotonic func-
tion of or even determined by the mass at birth; it may be random
and unpredictable. Very few stars other than degenerate dwarves
are found much below and to the left of the main sequence; most of
these few are probably evolving rapidly into degenerate dwarves.

An extrapolation of the main sequence to the lower right leads
to stars of mass too low to produce thermonuclear energy, generally
called brown dwarves. These objects slowly evolve into degenerate
dwarves of very low mass and lie near (but above, because of their
low masses) an extrapolation of the degenerate dwarf strip. Jupiter
may be regarded as an extreme case. These objects are nearly unob-
servable because of their low luminosities, and only a few, if any, can
be identified with confidence. Their properties are uncertain because
the properties of matter under brown dwarf conditions are not well
known; few data are available to test the uncertain calculations.

Objects at the upper left end of the main sequence are very rare,
with their rarity increasing with increasing mass and luminosity. As a
consequence, extrapolation beyond masses of 50M, is largely limited
to theory.

1.3 Equations

A star may be defined as a luminous self-gravitating gas cloud. If it
is also spherical, in hydrostatic equilibrium, and in thermal steady
state it is described by the classical equations of stellar structure:

dP(r) _ p(r)GM (r)

e = (1.3.1)
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dﬂgy): dmr2p(r) (1.3.2)
dzgf): dmr2p(r)e(r) (1.3.3)
dT'(r) 3r(r)p(r)L(r)

dr  16macT3(r)r? (1.34)

Here P(r) is the pressure, M (r) is the mass enclosed by a sphere of
radius 7, p(r) is the density, L(r) is the luminosity produced within
a sphere of radius r, €(r) is the rate of nuclear energy release per
gram, T'(r) is the temperature, x(r) is the Rosseland mean opacity
(defined in 1.7.2) in cm?/gm, and a is the radiation constant. The
first three of these equations are elementary; (1.3.4) is derived in 1.7.

Numerous assumptions and approximations have been made:
spherical symmetry, Newtonian gravity, a star in a stationary (un-
changing) state, and a flow of energy by the diffusion of radiation
only. Various of these assumptions may be relaxed if the equations
are appropriately modified. It is frequently necessary to allow for
the transport of energy by turbulent convection (most familiarly, in
the outer layers of the Sun) or by conduction (in electron-degenerate
matter).

These equations must be supplemented by three constitutive
relations, derived from the microscopic physics of the stellar material.
For any given chemical composition they take the form:

P=P(p,T) (1.3.5)
e=¢(p,T) (1.3.6)
k=k(p,T). (1.3.7)

These equations of stellar structure may be solved numerically,
which is necessary to obtain quantitative results. It is illuminating,
however, to make order-of-magnitude estimates. If we did not have
computers available (and were unwilling to integrate these equations
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numerically by hand), or did not know the quantitative form of the
constitutive relations, these rough estimates would be the best that
we could do. Until the development of quantitative theories of ther-
monuclear reactions and opacity, no detailed calculation was possi-
ble. Even today, rough estimates are the basis of most qualitative
understanding. In novel circumstances they are the first step toward
building a quantitative model.

1.4 Estimates

1.4.1 Order of Magnitude Equations In order to make rough ap-

proximations to the differential equations (1.3.1-4) we replace them
by algebraic equations in which the variables P, M, L, and T rep-
resent their mean or characteristic values in the star, the continuous
variable r is replaced by the stellar radius R, and the derivative d/dr
is replaced by the multiplicative factor 1/R. In most cases this level
of approximation produces useful rough results, although it is occa-
sionally disastrous; with intelligent choice of the numerical constants
it can be remarkably accurate, though usually only when a quanti-
tative solution is available as a guide.
The equations become:

GM

P=p——r 1.4.1
PR (1.4.1)

4
M = §7rR3p (1.4.2)

4
L= §7rR3pe (1.4.3)
4 = 3reL (1.4.4)

" 16mwacR’
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We now assume the perfect nondegenerate gas constitutive relation
for pressure

P=P,+P,
pNAkgT aT* (1.4.5)
= -+ ,
7 3

where P, and P, are the gas and radiation pressures respectively, p
is the mean molecular weight (the number of atomic mass units per
free particle), N4 is Avogadro’s number per gram, kp is Boltzmann’s
constant, and a is the radiation constant. Combination of (1.4.1),
(1.4.2), and (1.4.5) (ignoring the radiation pressure term in 1.4.5, an
excellent approximation for stars like the Sun) yields results for the
characteristic values of p, P, and T

3M

= 1.4.
3GM?
P="" (1.4.7)
GM u
= — . 1.4.8
R Nakp ( )

1.4.2 Application to the Sun In Table 1.1 we compare the numeri-

cal estimates for p, P, and T obtained by substituting the solar mass,
radius, and molecular weight, to the quantitative values found for the
center of the Sun in a numerical integration (Schwarzschild 1958) of
the equations (1.3.1)-(1.3.7). More recent calculations (Bahcall, et
al. 1982) produce slightly different numbers, but the difference is
of no importance when we are examining the validity of order-of-
magnitude estimates. We use R = 6.95 x 10'° cm, M = 2 x 1033 gm,
and p = 0.6.

The estimated value of T is remarkably accurate (probably for-
tuitously so), while the estimates of p and P are low by two orders of
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Table 1.1
Estimate Solar Center
p (gm/cm3) 1.42 134
P (dyne/cm?) 2.73 x 10'° 2.24 x 1017
T (°K) 1.39 x 107 1.46 x 107
K (cm?/gm) 2.18 x 103 1.07
e (erg/gm/sec) 1.95 14

magnitude (note that the estimated p is nothing more than the mean
stellar density). This large discrepancy reflects the concentration of
mass towards the center of a star, and is a consequence of the com-
pressibility of gases and the inverse-square law of Newtonian gravity.
The discrepancy also reflects a deliberate obtuseness on our part in
comparing the estimated values of p and P to the calculated central
values. Had we been more cunning we could have chosen to compare
to a suitable chosen “mean” point in the numerical integration, and
would have obtained truly impressive (but deceptive) agreement.

In all stars the central density greatly exceeds the mean density.
In stars of similar structure this ratio is nearly constant, and the
greatest use of eqs. (1.4.6-8) is as scaling relations among stars of
differing mass and radius. Rough estimates and qualitative under-
standing may be obtained readily; numerical integrations are always
possible when quantitative results are needed.

For giant and supergiant stars the ratio of central to mean den-
sity may be as much as 10'6. Such enormous ratios indicate a com-
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plete breakdown of the approximations (1.4.1-4); the interior struc-
ture of such stars is very different from that of stars like the Sun; it
can be roughly described by simple relations, but requires an under-
standing of their peculiar structure. In fact, their condensed central
cores and very dilute outer layers may each be separately described
by equations (1.4.6-8) with reasonable accuracy; disaster strikes only
when one attempts to describe both these regions together.

Equations (1.4.3) and (1.4.4) may also be used to estimate s
and € given the estimates for p, P, and T. For the Sun we use
L = 3.9 x 1033 erg/sec. These numerical values are also compared in
Table 1.1 to quantitative values at the Solar center (Schwarzschild,
1958). The estimated value of € is just the Solar (mass-weighted)
mean; the actual central value is several times higher because ther-
monuclear reaction rates are steeply increasing functions of temper-
ature, which peaks at the center. The estimated value of x is far
wrong; this is in part because of the hundredfold concentration of
density at the center, and in part because of the concentration into
a small central core of thermonuclear energy generation. Equation
(1.3.4) shows that using an erroneously low estimated p and high R
produces an erroneously large estimate for «.

Except for temperature, our rough estimates have been very in-
accurate. Approximations like those of equations (1.3.6) and (1.3.7)
are still useful, particularly when only scaling laws are needed for a
qualitative understanding. They can also produce semiquantitative
results when some additional understanding is inserted into the equa-
tions in the form of intelligently chosen numerical coefficients. We
have deliberately refrained from doing so in order to show the pitfalls
as well as the utility of rough estimates; when aided by intuition and
guided by experience they can do much better.
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1.4.3 Minimum and Maximum Stellar Surface Temperatures The

observed range of stellar surface temperatures is approximately
2500°K to 50, 000°K. These limits each have simple explanations.

The continuum opacity of stellar atmospheres is largely at-
tributable to bound-free (photoionization) and free-free (inverse
bremsstrahlung) processes. For the visible and near-infrared photons
carrying most of the black-body flux at low stellar temperatures the
most important bound-free transition is that of the H™ ion, which
has a threshold of 0.75 eV. At temperatures of a few thousand degrees
matter consists largely of neutral atoms and molecules, and the small
equilibrium (Saha equation) free-electron density is very sensitive to
temperature, dropping precipitously with further decreases in tem-
perature. The H™ abundance, in equilibrium with the free electrons,
drops nearly as steeply. The atmosphere approaches the very trans-
parent molecular gas familiar from the Earth’s atmosphere. As a
consequence of this steep drop in opacity, the photosphere (the layer
in which the emitted radiation is produced) of a very cool star forms
at a temperature around 2500°K, below which there is hardly enough
opacity and emissivity to absorb or emit radiation. This tempera-
ture bound is insensitive to other stellar parameters, and amounts to
an outer boundary condition on integrations of the stellar structure
equations for cool stars.

The maximum stellar surface temperature has a different expla-
nation. In luminous stars the radiation pressure far exceeds the gas
pressure, and the luminosity is nearly the Eddington limiting lumi-
nosity Lg (1.11), at which the outward force of radiation pressure
equals the attraction of gravity:

L~Lg= M, (1.4.9)

K
where k is the opacity. Under these conditions the opacity is pre-
dominantly electron scattering, and x = 0.34 cm?/gm, essentially
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independent of other parameters. The effective (surface) tempera-
ture T, is then approximately given by

GM
Ti= (1.4.10)
HUSBRz
where ogp is the Stefan-Boltzmann constant. In order to estimate

R we approximate the pressure by the radiation pressure

P~ %T‘*, (1.4.11)

where T is an estimate of the central temperature. Note that here we
neglect the gas pressure; in obtaining equation (1.4.8) we neglected
the radiation pressure. Eliminating P and p from (1.4.1), (1.4.6),
and (1.4.11) produces an estimate for R:

i 9GM?

= ; 1.4.12
draT4 ( )

Substituting this result in (1.4.10) gives

T?c [4
Tt = — %/ ZracG. (1.4.13)
ROSB 9

Because thermonuclear reaction rates are usually very steeply in-

creasing functions of temperature, the condition that thermonuclear
energy production balances radiative losses acts as a thermostat; de-
tailed calculation shows that T ~ 4 x 107°K, nearly independent of
other parameters for these very massive and luminous stars. Numer-
ical evaluation of (1.4.13) then gives

T, ~ 90,000°K. (1.4.14)

This numerical value is about twice as large as the results of de-
tailed calculations, but they confirm the qualitative result of a mass-
independent upper bound to 7T, for hydrogen burning stars.
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1.5 Virial Theorem

For stars (defined as self-gravitating spheres in hydrostatic equilib-
rium) it is easy to prove a virial theorem, so named because it is
closely related to the virial theorem of point-mass mechanics. Begin
with the equation (1.3.1) of hydrostatic equilibrium and assume it is
always valid:

) GMr) _ dP(r)
2 dr
Multiply each side by 473, and integrate over r, integrating by parts:

R R
—/ p(r)iGM(r)@rrsz:/ dP(T)47r7'3d7'
0 r 0 dr

—p( (1.5.1)

R R
= —/ 12nr2 P(r)dr + 4wr3 P(r)
0

0
(1.5.2)
The definition of the stellar radius R is that P(R) = 0. Hence

_ /OR p(r)%m4wr2dr =-3 /OR P(r)4nridr. (1.5.3)

The left hand side is the integrated gravitational binding energy of
the star Fg.q,. For a gas which satisfies a relation P o p7 for adia-
batic processes we can use the thermodynamic relation (see 1.9.1)

P=(y-1)¢, (1.5.4)

where £ is the internal energy per unit volume. If we denote the
integrated internal energy content of the star by E;,, we obtain

Egrav = —3(y — 1) Eip,. (1.5.5)

Denoting the total energy E' = FE;, + Fgrq, We have

3y — 4
E = Ein(4—37) = Egray (3’;7_3) <0. (1.5.6)
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The inequality comes from the requirement that a star be energet-
ically bound. This simple relation is very useful in qualitatively
understanding stellar stability and energetics.

For perfect monotonic nonrelativistic gases (including the fully
ionized material which constitutes most stellar interiors) v = 5/3;
this applies even if the electrons are Fermi-degenerate. For a perfect
gas of relativistic particles or photons v = 4/3; this is a good de-
scription of gases whose pressure is largely that of radiation. Gases
in which new degrees of freedom appear as the temperature is raised
(for example, those undergoing dissociation, ionization, or pair pro-
duction) may have still lower values of -y, approaching 1. Interatomic
forces reduce vy if attractive, or increase it if repulsive (as for the
nucleon-nucleon repulsion of neutron star matter).

If v = 5/3, as is accurately the case for stars like the Sun, and
more roughly so for most degenerate (white) dwarves and for neutron
stars, then F = %Egmv = —F;, < 0. Such a star is gravitationally
bound with a large net binding energy, and resists disruption. It is
also stable and resists dynamical collapse, because in a smaller and
denser state |Egrq,| and |E| would be larger. In order to reach such
a state it would have to reduce its total energy F, but on dynamical
time scales energy is conserved. Energy can only be lost by slow
radiative processes (including emission of neutrinos); in most cases
it is stably replenished from thermonuclear sources.

A star with v > 4/3 may be thought of as having negative spe-
cific heat, because an injection of energy increases E, which reduces
|E|, |Egrev| and E;, (see 1.5.6). Because temperature is a mono-
tonically increasing function of E;, (and depends only on E;, for
perfect nondegenerate matter) this injection of energy leads to a re-
duction in temperature; similarly, the radiative loss of energy from
the stellar surface, if not replenished internally, leads to increasing
internal temperature. The reason for this somewhat surprising be-
havior, described as a negative effective specific heat, is the fixed
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relation (1.5.5) between E;, and Eg.4,, which holds so long as the
assumption of hydrostatic equilibrium is strictly maintained. The
negative effective specific heat is also the reason thermonuclear en-
ergy release, which increases rapidly with temperature, is usually
stably self-regulating.

In a degenerate star the relation between E;, and temperature
is complicated by the presence of a Fermi energy and the effective
specific heat is positive when thermonuclear or radiative processes
are considered; thermonuclear energy release is either insignificant
or unstable, and radiation produces steady cooling. On dynamical
time scales processes are adiabatic and the star is stable, just as is a
nondegenerate star. F;, is related to the Fermi energy which varies
in proportion to the temperature for adiabatic processes, and the
effective specific heat is again negative.

A star with v = 4/3 has F = 0; the addition of 1 erg is sufficient
to disrupt it entirely, and the removal of 1 erg to produce collapse.
Of course, stars with -y exactly equal to 4/3 do not exist (and cannot
exist, for this reason), but as y approaches 4/3 a star becomes more
and more prone to various kinds of instability. Stars with v very close
to 4/3 include very massive stars whose pressure is almost entirely
derived from radiation, and degenerate dwarves near their upper
mass (Chandrasekhar) limit.

A star with v < 4/3 would have positive energy and would be
exploding or collapsing. Such stars do not exist, but localized re-
gions with v < 4/3 do. They are found in cool stellar atmospheres
(especially those of giants and supergiants) in which matter is partly
ionized, and possibly in the cores of evolved stars which are hot
enough for thermal pair production or dense enough for nuclei to un-
dergo inverse 3-decay. Such regions tend to destabilize a star, though
the response of the entire star must be calculated to determine if it
is unstable; instability is a property of an entire star in hydrostatic

equilibrium, not of a subregion of it.
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1.6 Time Scales

A star is characterized by a number of time scales. The shortest is
the hydrodynamic time scale t;, which is defined

R3
=4/ —=—. 1.6.1
th =/ i (1.6.1)

This is approximately equal to the time required for the star to col-
lapse if its internal pressure were suddenly set to zero. The funda-
mental mode of vibration has a period comparable to t5, as does a
circular Keplerian orbit skimming the stellar surface. For phenom-
ena with time scale much longer than t; the star may be considered
to be in hydrostatic equilibrium, and eq. (1.3.1) applies. On shorter
time scales the application of (1.3.1) is in general not justified. For
the Sun ¢;, ~ 26 minutes.
The thermal time scale ¢, is defined

E

tth = fa (162)

where F is the total energy (gravitational plus internal) of the star, as
defined in 1.5, and L is its luminosity. This is the time which would
be required for a star to substantially change its internal structure if
its thermonuclear energy supply were suddenly set to zero. For phe-
nomena with time scales longer than ¢;, the star may be considered
to be in thermal equilibrium, and eq. (1.3.3) applies. The applica-
tion of (1.3.3) on shorter time scales is in general not justified. For
the Sun t, ~ 2 x 107 years.

The longest time scale is the thermonuclear time ¢,,, defined by

Mec?
L )

(1.6.3)

where ec? is the energy per gram available from thermonuclear re-
actions of stellar material. This measures the life expectancy of a
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star in a state of thermal equilibrium. After a time of order t,, its
fuel will be exhausted and its production of radiant energy will end;
a wide variety of ultimate fates are conceivable, including cooling to
invisibility, explosion, and gravitational collapse. For ordinary stel-
lar composition € ~ 0.007; about 3/4 of this is accounted for by the
conversion of hydrogen to helium and about 1/4 by the conversion of
helium to heavier elements. For the Sun ¢, ~ 10! years; its actual
life will be about ten times shorter because after the exhaustion of
the hydrogen in a small region at the center, L will begin to increase
rapidly and its remaining life will be brief. The Sun is presently near
the midpoint of its life.

There is an additional time scale ¢t which characterizes stars in
general. In 1.4.3 we saw that there is a characteristic luminosity Lg
(Eq. 1.4.9) which serves as an upper bound on stellar luminosities.
Define the Eddington time ¢{g as the thermonuclear time ¢, for a
hypothetical star of luminosity Lg. Then

ECK 2¢et

= = , 1.6.4
ArG  3GcAm2Zmpp. ( )

192

where we have written the electron scattering opacity x in terms of
fundamental constants and p. is the mean number of nucleons per
electron. For ordinary stellar composition tg ~ 3 x 10° years. This
is an approximate lower bound on the lifespan of a star. Because it
nearly four orders of magnitude shorter than the age of the universe,
luminous stars have passed through many generations, manufactur-
ing nearly all the elements heavier than helium. The luminosities of
stars range over at least nine orders of magnitude, so lower luminos-
ity stars have lifetimes very much longer than tg, and even much
longer than the present age of the universe.

A quantity analogous to the Eddington time is also an important
parameter in the study of rapidly accreting masses (for example, in
models of X-ray sources and quasars; Salpeter 1964). The luminosity
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is given by L = Mc2e. The Salpeter time is defined as the e-folding
time of the mass M, if L = Lg:

M ECK
—_—= 1.6.5
M AnG ( )

Il

ts

It is usually estimated that € ~ .1, so that tg ~ 4 x 107 years. This
is the characteristic lifetime of such a luminous accreting object.

Finally, there is a simple “light travel” time scale t;; which may
be defined for any object of size R:

tie = E (1.6.6)
c

It is generally not possible for an object of size R to change substan-
tially (by a factor of ~ 2) its emission on a time scale shorter than
t1¢, because that is the shortest time in which signals from a single
triggering event can propagate throughout the object, and hence the
shortest time on which its emission can vary coherently. A small
change, by a factor 1 4+ 6 with § < 1, can occur in a time ~ 0ty. If
the velocity of propagation were the sound speed (or, equivalently,
a free-fall speed) rather than ¢, then t;; would be the hydrodynamic
time t5, given by (1.6.1).

The time scale t;; is chiefly used in models of transient or rapidly
variable objects in high energy astrophysics, such as variable quasars
and active galactic nuclei, y-ray bursts, and rapidly fluctuating X-ray
sources. The observation of a substantial variation in the radiation
of an object in a time t,,, is evidence that its size R satisfies

RS ctyar- (1.6.7)

Such an upper bound on R may then be combined with the luminos-
ity to place a lower bound on the radiation flux and energy density
within the object, and therefore to constrain models of it.
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These arguments contain loopholes. It is possible to synchro-
nize clocks connected to energy release mechanisms and distributed
over a large volume so that they all simultaneously trigger a sud-
den release of energy (because the clocks are at rest with respect to
each other there is no difficulty in defining simultaneity). A distant
observer would not see the energy release to be simultaneous, but
rather spread over a time ¢;;, where R is the difference in the path
lengths between him and the various clocks. However, if the clocks
have appropriately chosen delays which cancel the differences in path
lengths, he will see the signals of all the clocks simultaneously, violat-
ing (1.6.7). This would require a conspiracy among the clocks which
is unlikely to occur except by intelligent design, and would produce
a signal violating (1.6.7) only for observers in a narrow cone.

Other loopholes are more likely to occur in nature. A strong brief
pulse of laser light propagating through a medium with a population
inversion depopulates the excited state at the moment of its passage.
Nearly all of the medium’s stored energy may appear in a thin sheet
of electromagnetic energy, whose thickness may be much less than
R, and whose duration measured by an observer at rest may violate
(1.6.7). This is a familiar phenomenon in the laser laboratory, in
which nanosecond (or shorter) pulses of light may be produced by
arrays of lasing medium more than a meter long.

Analogous to a thin sheet of laser light is a spherical shell of
relativistic particles streaming outward from a central source (Rees
1966). If they produce radiation collimated outward (radiation pro-
duced by relativistic particles is usually directed nearly parallel to
the particle velocity) the shell of particles will be accompanied by a
shell of radiation. This radiation shell will propagate freely, and will
eventually sweep over a distant observer, who may see a rapidly vary-
ing source of radiation whose duration violates (1.6.7). The factor by
which it is violated depends on the detailed kinematics of the radi-
ating particles. In general, (1.6.7) is inapplicable when there is bulk
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relativistic motion, even if only of energetic particles; conversely, its

violation implies bulk relativistic motion.

1.7 Radiative Transport

1.7.1 Fundamental Equations = The most important means by
which energy is transported in astrophysics is by the flow of radi-
ation from regions of high radiant energy density to those of lesser;
radiation carries energy from stellar interiors to their surfaces, and
from their surfaces to dark space. The complete theory of this pro-
cess is unmanageably and incalculably complex and cumbersome,
but a variety of approximations make it tractable and useful. Fortu-
nately, these approximations are well justified in most (but not all)
circumstances of interest, so that the theory is not only tractable
but also powerful and successful. Here we will be concerned princi-
pally with the simplest limit, applicable to stellar interiors, in which
matter is dense and opaque, and radiation diffuses slowly. There is
another, even simpler limit, that of vacuum, through which radia-
tion streams freely at the speed c. Between these limits there are the
more complex problems of radiative transport in stellar atmospheres
(by definition, the regions in which the observed photons are pro-
duced). This is a large field of research blessed with an abundance of
observational data; several texts exist (for example, Mihalas 1978).
Consider in spherical coordinates the propagation of a beam of
radiation, so that » measures the distance from the center of the co-
ordinate system and 9 is the angle between the beam and the local
radius vector. In general, the radiation intensity I will depend on
the point of measurement (r, 6, ¢) (note that ¥ must be distinguished
from the polar angle 6), on the polarization, and the the photon fre-
quency v. In most cases it is possible either to assume spherical
symmetry (so that there is no dependence on 6 and ¢), or to treat
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the problem at different # and ¢ locally, so that these angles enter
only as parameters of the solution, like the chemical composition of
the star being studied. In either case it is not necessary to consider 6
and ¢ explicitly, and they will be ignored, along with any dependence
of the intensity on the azimuthal angle ¢ of its propagation direc-
tion. Problems in which these approximations are not permissible
are difficult, and generally their solution requires Monte Carlo meth-
ods (in which the paths of large numbers of test photons are followed
on a computer in order to determine the mean flow of radiation). I
also neglect polarization because it does not significantly affect the
flow of radiative energy; it is worth calculating in some stellar atmo-
spheres because it is sometimes observable for nonspherical stars or
during eclipses (symmetry implies that the radiative flux integrated
over the surface of a spherical star is unpolarized). The frequency
dependence of the radiation field is important, although it will not
always be written explicitly.

In travelling a small distance dl a beam loses a fraction kpdl of its
intensity, where & is the mass extinction coefficient (with dimensions
of cm?/gm), and p is the matter density. We consider a beam with
intensity I(r,9) (with dimensions erg/cm?/sec/steradian, where the
element of solid angle refers to the direction of propagation, not to
the geometry of the spherical star); the power crossing an element of
area ds normal to the direction of propagation, and propagating in an
element dS2 of solid angle, is I(r,9)dsd(2. In the short path dl a power
I(r,9)kpdldsdQ2 is removed from the beam by matter in the right
cylinder defined by ds and dI, where we have taken dQ < ds/dI>.
Matter also emits radiation, and the volume emissivity j is defined so
that the power emitted by the volume dlds into the beam solid angle
dS2 is j pdlds%. The units of j are erg/gm/sec and the emission is
assumed isotropic, as is the case unless there is a very large magnetic
field.

After travelling the distance dl the radiation field transports
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energy out of the cylinder with a power I(r-+dr, 9+d¥)dsdS), where it
has been essential to note that a straight ray (we neglect refraction)
changes its angle to the local radius vector as it propagates. In a
steady state the energy contained in the cylinder does not change
with time, so that the sum of sources and sinks is zero:

I(r,9)dsdQ2—I(r, ﬁ)ﬁpdldsdQ—i-jpdldsj—Q—I(r-l—dr, 9+dd)dsdQ = 0.
T

(1.7.1)

From elementary geometry
dr = dl cos? (1.7.2a)
dd = —dlsind/r. (1.7.2b)

These equations are a complete description of the trivial problem
of the propagation of a ray in vacuum, and may be combined and
integrated to yield the solution

r=rscscd, (1.7.3)

where 7, is the distance of closest approach of the ray to the center
of the sphere. If the polar axis of the spherical coordinates is chosen
to pass through the point at which the ray is tangent to the sphere
of radius r, then the path of the ray in spherical coordinates is given
by

0=m/2—9=m/2—sin " (r,/T). (1.7.4)
If we expand I(r,¥) in a Taylor series:
I 1
I(r + dr, 9+ dd) = I(r,9) + ° (87; D42 (g:;ﬁ)dz?-i— e, (17.5)

keep only first order terms in small quantities, and substitute this
and the expressions 1.7.2 into 1.7.1, we obtain the basic equation of
radiative transport:

oL, (r,9) I, (r,9) sin?d
Tor VT a0

+ Kupl,(r,9) — % =0. (1.7.6)
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The subscript v denotes the dependence of I, x, and 57 on photon
frequency; properly I, and j,, are defined per unit frequency interval.
Henceforth we do not make this subscript or the arguments (7,v)
explicit unless they are being discussed.

We are usually more interested in quantities like the energy den-
sity of the radiation field and the rate at which it transports energy
than in the full dependence of I on angle. Fortunately, these quanti-
ties may be represented as angular integrals over I, and are intrinsi-
cally much simpler quantities which satisfy much simpler equations
than (1.7.6). Only in the very detailed study of stellar atmospheres is
the full angular dependence of I significant. The following quantities

are important:

4 1
I =Erga =~ /I dQ (1.7.7a)
C C
H= /Icosﬂ s (1.7.7b)
4 1
K =Pga = - /Icos2 9 dS. (1.7.7¢)
C C

In (1.7.7a) and (1.7.7c) two symbols have been defined because both
are in common use. Sometimes H is defined as ﬁ times the definition
in (1.7.7b). The integrals in (1.7.7) are called the angular moments
of I; clearly an infinite number of such moments may be defined, but
these three are usually the only important ones. It is evident that
Erad is the energy density of the radiation field, H is the radiation
flux (the rate at which radiation carries energy across a unit surface
normal to the ¥ = 0 direction), and P,,q4 is the radiation pressure.
As defined these quantities are functions of frequency, but formally
identical relations apply to their integrals over frequency.

In general the n-th moment (where n is the power of cosd ap-
pearing in the integrand) is a tensor of rank n; the scalar expressions
of (1.7.7b) and (1.7.7c) refer to the z component of the flux vector
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and the zz component of the radiation stress tensor, where 2 is the
unit vector along the ¥ = 0 axis. In practice, the z component of H
is usually the only nonzero one and the stress tensor is usually nearly
isotropic so that it may be described by a scalar P,,q4.

It is now easy to obtain differential equations for the simpler
quantities &,qq, H, P.qq by taking angular moments of equation
(1.7.6); that is, by applying [ cos™ ¥ dS2 to the entire equation and
carrying out the integrals. The zeroth and first moments are

dH 2
— +-H+ CﬁpgTad - ],0 =0 (178&)
dr T
dPrad 1 Kp
—(3Pygq — & —H =0. 1.7.8b
dr + r( d rad) + c ( )

There is an evident problem with this procedure: we have two
equations for the three quantities &,,4, H, and P,,q. If we obtain a
third equation by taking the second moment of (1.7.6) we must eval-
uate integrals like [ I cos® ¥ d€), which introduce a fourth quantity,
the third moment of I. It is evident that this problem will not be
solved exactly by taking any finite number of moments; it arises very
generally in moment expansions in physics.

In practice moment expansions are truncated; only a small finite
number of moments are taken, and some other information, usually
approximate, is used to supply the missing equation. In order to do
this expand I in a power series in cos 9:

I=1Iy+1Icos?d+ Ircos® 9+ ---. (1.7.9)

We could also expand in Legendre polynomials, which would have
the advantage of being orthogonal functions, but for the argument
to be made here this is unnecessary. Substitute this power series into
(1.7.6), and equate the coefficients of each power of ¥ in the result-
ing expression to zero. There results an infinite series of algebraic
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equations whose first three members are:

I Jp
-1 Io = 22 1.7.10
; + kplp yp ( a)
ol 21
or r
ol I 31
_1 — _1 _|_ _3 + K:pIQ = 0_ (1.7.100)
or T r

We now need only to estimate the order of magnitude of the I,,,
so we may replace % by 1/l and r by [ where [ is a characteristic
length (noting that % and —1/r do not cancel because this is only an
order-of-magnitude replacement—instead, their sum is still of order
1/1). Again, we have one more variable than equations. However,
these equations have an approximate solution for which terms in-
volving the extra variable become insignificant. This solution is

J

Iy~ — 1.7.11
O dnr (17.11a)
I, ~ Iy(kpl)™™ n>1. (1.7.11b)

The factor (kpl) is generally very large (~ 10'° in the Solar inte-
rior) so the higher terms in (1.7.9) become small exceedingly rapidly.
As a result (1.7.11a) holds very accurately, while (1.7.11b) is only
an order of magnitude expression. It is evident that the terms in
(1.7.10) which bring in more variables than equations (those of the
form nl,/r) are smaller than the other terms by a factor of order
(kpl)~2 and are completely insignificant. (1.7.11b) is a rough approx-
imation only because of the replacement of 6% by 1/1, not because
of the neglect of the terms of the form nl, /r.

Because of (1.7.11b), (1.7.9) may be truncated after the n =1
term, and &,44, H, and P,,q expressed to high accuracy in terms of
Iy and I alone, reducing the three variables to two. The important
result is that

4 1

Prog = —1Ty = =&, oq. 1.7.12
47 370 T gorad ( )
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This relation between P,,q and &,,4 is known as the Eddington ap-
proximation. By relating two of the moments of the radiation field
it “closes” the moment expansion (1.7.8). It holds to high accuracy
everywhere except in stellar atmospheres (in which kpl ~ 1).

It might be thought that more accurate results could be ob-
tained by taking more terms in the moment expansions. In stellar
interiors this is unnecessary. Where (1.7.12) is not accurate, taking
higher terms does not lead to rapid improvement. Expansions which
do not converge rapidly often do not converge at all. A numerical
description of the full ¥ dependence of I is a better approach.

The form of (1.7.12) is no surprise; it expresses the relation
between radiation pressure and energy density in thermodynamic
equilibrium, which should hold deep in a stellar interior. Similarly,
if the matter at any point is locally in thermal equilibrium and there
are no photon scattering processes the right hand side of (1.7.11a)
equals (by the condition of detailed-balance) the black-body radia-
tion spectrum (also called the Planck function) B,:

Ju 2hv3 1

ATk, 2 exp(hv/kgT) -1 (1.7.13)

The condition that the matter is in local thermal equilibrium
(abbreviated LTE) holds to high accuracy in stellar interiors. It
may fail in stellar atmospheres where the radiation field is strongly
anisotropic, being mostly directed upward; such a radiation field is
not in equilibrium (the Planck function is isotropic), and may drive
populations of atomic levels away from equilibrium. This often pro-
duces observable effects in stellar spectra, but does not have signifi-
cant effects on the gross energetics of radiative energy flow.

Scattering presents a different problem. It is simple enough to
include scattering out of the beam in the opacity «, but the source
term j is more difficult, because radiation is scattered into the beam
from all other directions (and, in some cases, from other frequencies).
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In general, a term of the form

!/ /
/ deydy 27 d%; YY) ey oy (1.7.14)
must be added to j, in (1.7.6), where o is the scattering cross-section,
and the solid angles 2 and Q' describe the pairs of angles (9, ¢) and
(9, ¢"). The azimuthal angles must be included to completely de-
scribe the geometry of scattering. This term is complicated; worse,
it turns the relatively simple differential equation (1.7.6) into an in-
tegral equation which is much harder to solve. If the radiation field
equals the Planck function, as is accurately the case in stellar interi-
ors, then the relation (1.7.13) holds even in the presence of scattering,
and it is not necessary to consider the messy integral (1.7.14).

In stellar interiors we may use the Eddington approximation
(1.7.12) to reduce equations (1.7.8) to the form

d(Hr?
(d: ) + ckpEraga —jp=0 (1.7.15a)
c dgrad
H+ — = 1.7.15b
+3ﬁp o 0 (1.7.15b)

1.7.2 Spectral Averaging and Energy Flow In stellar interiors we

are concerned with the flow of energy, and not with its detailed fre-
quency dependence. We therefore wish to consider frequency inte-
grals of our previous results. Define the luminosity L = [ Anr?H, dv,
and note that in steady state there is no net exchange of energy be-
tween the radiation and the matter, so that f Jupdv = f ckyEradpdv.
Then (1.7.15a) states that L is independent of 7. For a star in steady
state (as we have assumed) this is just the conservation of energy.
In discussing radiative transport we have neglected nuclear energy
generation; if it were included we would obtain (1.3.3).
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It is more interesting to integrate (1.7.15b) over frequency. De-
fine Hyy = [ Hydv and &4y = [ Ergandv so that

Ha,v — _i i dg’radu dv
3pJ Ky, dr
i dgTadu

1.7.16
c dgav Ky dr dv ( )

3p dr /dgradudy
dr

Because the radiation field I, is very close to that of a black body
B, we may write £ qqp = %By. Then (1.7.16) may be written in
the simple form

c dfuy
H,, = — 1.7.1
w 3kgp dr’ (1.7.17)
where we have defined the Rosseland mean opacity
[Py [Py,
pp=—L 4 _ _J dT (1.7.18)
= LdB, ~— [1dB, = o
Ky, dr v K, dT v

These integrals may be computed from the atomic properties of the
matter and the Planck function.

The Rosseland mean kg is a harmonic mean, and therefore is
sensitive to any “windows” (frequencies at which x, is small), but is
insensitive to spectral lines at which &, is large. This behavior is very
different from that of the frequency-integrated microscopic emissivity
of matter (which gives the power radiated by low density matter for
which absorption in unimportant); this emissivity is proportional to
the arithmetic mean of k, so that lines are important but windows
are not. The spectrum of matter usually contains many absorption
lines, but not windows, because there generally are processes which
provide some absorption across very broad ranges of frequency. The

Rosseland mean is therefore not very sensitive to uncertainties in
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k., which is fortunate, because k, is hard to calculate accurately.

Because of the frequency dependences of dﬁ:’ and of typical k,, Kr

is most sensitive to the values of k, at frequencies for which k';;—”T ~
3-10.
(From (1.7.17) we obtain
¢ dP,

Hyy=—— , 1.7.19
Krp dr ( )

where P, is the frequency-integrated radiation pressure. This relates
the rate at which radiation carries energy to the gradient of radiation
pressure. If the black body relation P, = %T‘L is substituted in

(1.7.19) and the definition of L is used then (1.3.4) is obtained.

aP,
dr

crease outward, an unlikely event which would require that the den-

In general 0 > > % (unless the gas pressure were to in-
sity also increase outward, an unstable situation; see 1.8.1). The
equation of hydrostatic equilibrium (1.3.1) gives %, so that (1.7.19)
implies an upper bound on H,, and on L for a star in hydrostatic
equilibrium. This is the origin of the Eddington limit on stellar lu-

minosities Lg used in 1.4.3.

1.7.3 Scattering Atmospheres An interesting application of these

equations is to the problem of an atmosphere in which the opacity is
predominantly frequency-conserving scattering, rather than absorp-
tion. This is a good approximation for hot luminous stars, X-ray
sources, and the hotter parts of accretion discs, but also for visi-
ble radiation in very cool stellar and planetary atmospheres. Define
the single-scattering albedo w of the material as the fraction of the
opacity attributable to scattering; then 1 — w < 1 is the fraction
attributable to absorption.

Begin with equations (1.7.8), assume a nearly isotropic radiation
field and the Eddington approximation (1.7.12), and consider the
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case of a plane-parallel atmosphere of uniform temperature, so that
% < % and B is independent of space. Equations (1.7.8) become

dH
W + ckpEraa — jp =0 (1'7'200’)
dPrad Kp
—H =0. 1.7.206
dr * c ( )

The source term j is now given by
Jj=4n1kB(1 — w) + k€ rqacw; (1.7.21)

substitution leads to
1 dH

oy dr + &radc(l —w) —4nB(1 — w) = 0. (1.7.22)

Define the optical depth 7 by
dr = —kpdr, (1.7.23)

with 7 = 0 outside the atmosphere (above essentially all its material);
this definition is used in all radiative transfer problems. Equations
(1.7.22) and (1.7.20b) become

H
CCll—T = (gradc - 47TB)(1 — w) (1724@)
1dé H
3 o (1.7.24b)

Differentiation of (1.7.24b) and substitution into (1.7.24a) leads to

d2(g,«ad — 47TB/C) _
dr? N

3(1 — @)(Erga — 47 B/c). (1.7.25)

Applying the boundary condition that £.,4 — 47B/c as 7 — o0
leads to the solution

Erad = # [1 —exp(—+/3(1 — w)r)]. (1.7.26)
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One consequence of this result is that the radiation field does not
approach the black body radiation field until 7 & [3(1—w@)]~ /2 > 1;
in an atmosphere with largely absorptive opacity the corresponding
condition is 7 < 1.

Another consequence is found when we compute the emergent
radiant power H (7 = 0) from (1.7.24b):

H= ?Mgu ) (1.7.27)

This should be compared to the result for a black body radiator
H = 7B, which is obtained from (1.7.7b) if I = B for ¢ < 7/2, and
I =0 for ¥ > w/2. The scattering atmosphere radiates a factor of
2/3(1 — w) < 1 as much power as a black body at the same temper-
ature. This may be described as an emissivity ¢ = 51/3(1 —w) < 1
of the scattering atmosphere; by the condition of detailed balance
such an atmosphere has an angle-averaged albedo (the fraction of
incident flux returned to space after one or more scatterings) of
1 —¢. If it has an effective temperature T, its actual temperature
T ~ ¢ V4T, ~ 0.81(1 — w)~Y/3T,, where we have assumed that w
and ¢ are not strongly frequency dependent.

The high albedo of a medium whose opacity is mostly scatter-
ing is observed in everyday life when one adds cream to coffee. The
extract of coffee we drink is a nearly homogeneous substance whose
opacity is almost entirely absorptive; its albedo is very low. The
mixture of coffee and cream is visibly lighter in appearance because
of the high scattering cross-sections of globules of milk fat. The re-
duced emissivity of the mixture is unobservable, because the Planck
function is infinitesimal at visible wavelengths and room tempera-
ture.

Equation (1.7.27) appears to imply ¢ > 1 if o — 0, but this ther-
modynamically impossible result is incorrect because the assumption
of the Eddington approximation is invalid for 7 N 1, which is the
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important region in determining the emergent flux from an absorb-
ing atmosphere. In a scattering atmosphere, optical depths up to
[3(1 — @)]~Y/2 > 1 are important; the Eddington approximation is
valid over most of this range.

1.8 Turbulent Convection

If we heat the bottom and cool the top of a reservoir of fluid at rest,
heat will low upward. The central regions of stars are heated by
thermonuclear reactions and their surfaces are cooled by radiation.
If the rate of heat flow is low, it will flow by a combination of radi-
ation and conduction. Conduction is usually dominant in everyday
liquids and in degenerate stellar material, and radiation is usually
dominant in gases, at high temperatures, and in nondegenerate stel-
lar interiors. At high heat fluxes a new process appears, in which
macroscopic fluid motions transport warmer material upward and
cooler material downward. This process is called convection. For
limited parameter ranges convection may take the form of a laminar
flow, but in astronomy it is almost always turbulent, if it occurs at
all. We must ask when it occurs and what are its consequences.

1.8.1 Criteria Two criteria must be satisfied in order to have con-
vection. The first is that viscosity not be large enough to prevent
it. This is an important effect in small laboratory systems, and suc-
cessful quantitative theories exist, but in stellar heat transport the
influence of viscosity is negligible; if convection takes place at all
Reynolds numbers usually exceed 1019,

The more important criterion is that the thermodynamic state
of the stellar interior be such that convective motions release energy,
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rather than requiring energy to drive them. In other words, convec-
tion will occur if it carries heat from hotter regions to cooler ones
(given the well-justified assumption that viscosity is a negligible re-
tarding force), but not if it were to carry heat from cooler regions to
hotter ones.

To make this criterion more quantitative we compare the ther-
modyamic state of the star at two radii separated by a small radius
increment dr; at r; the pressure is P, and the density is p;, while at r,,
the pressure is P, and the density is p,. We assume that the chemi-
cal composition is uniform and that densities and opacities are high
enough that radiative transport of energy is negligible on the time-
scales of convective motions; these assumptions are usually (but not
always) justified in stellar interiors, but fail in stellar atmospheres.
We also relate adiabatic variations in the pressure and density of the
fluid by an equation of state of the form

P x p. (1.8.1)

Such a fluid is known as a “y-law” gas; v is discussed in 1.9.1 and
is usually between 4/3 and 5/3. It is here only necessary to assume
that the form (1.8.1) holds for adiabatic processes over small ranges
of P and p; this will be the case for any fluid except near a phase
transition.

Now consider raising an element of fluid from the lower level
to the upper one, with all fluid velocities slow (much slower than
the sound speed) so that the fluid element remains in hydrostatic
equilibrium with its mean surroundings. When it reaches the upper
level it has a density p!, given by

1
P\ 1 dP
P [ 22) (14— dr) . 1.8.2
Pl pl(ﬂ) pz<+71 7") (1.8.2)

If p;, > p, then the raised fluid element is denser than its sur-
roundings and will tend to fall back to its initial position. In this case
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the fluid is stable against convective displacement. A more quanti-
tative analysis would calculate the frequency of sinusoidal perturba-
tions of the horizontal fluid layers (analogous to water surface waves,
but allowing for the continuous variation of P and p), and would find
their frequency to be real.

If p!, < p, the raised fluid is less dense than its surroundings,
and experiences a further buoyancy force which accelerates its rise. A
similar calculation of the density of a fluid element descending from
the upper layer shows that for it p; > p;, so negative buoyancy accel-
erates its descent. In this case the fluid is unstable, and convective
motions begin. In the more quantitative analysis the perturbations
of the horizontally layered structure have imaginary frequencies of
both signs, and grow exponentially.

For small dr we may write p, ~ p; + %dr so that the stability

condition becomes
1 dP 1dp

~Far < oa (1.8.3)
This awkward-appearing form with minus signs on each side has been
chosen because the derivatives are both negative.

The definition of an incompressible fluid is that v — oo; then
the stability criterion (1.8.3) becomes 3—;’ < 0, a familiar result. It
is apparent that for compressible fluids as well % > 0 would make
stability impossible (because the equation 1.3.1 of hydrostatic equi-
librium requires % < 0). For an adiabatic equation of state of the
form (1.8.1) the entropy S o In(P/p?), and the stability condition
takes the form

as
0< —. 1.84
dr ( )
These stability conditions are local; it is clear that if an unstable
interchange is possible between two widely separated layers (1.8.3)
and (1.8.4) will be violated for at least a portion of the region between

the layers.
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The bound (1.8.3) may be transformed into a bound on 9T by
use of (1.4.5); the result is messy unless one of the terms in (1.4.5)
is negligible. More generally, if P oc p*T? (in contrast to 1.8.1, this
refers to the functional form of P(p, T'), and not to its variation under
adiabatic processes) we can readily obtain

o\ 1dP _ BdT
(o)Lt _Pal 1.8,
( 7>Pdr> T dr (1.85)

This is known as the Schwarzschild criterion for stability.

In this derivation we have assumed uniform chemical composi-
tion and have ignored angular momentum. Either of these may make
the problem much more difficult. For example, if the matter in layer
[ has higher molecular weight than that in layer u this will tend to
stabilize the fluid against convection. A more subtle process called
semi-convection may still occur even when ordinary convection does
not; it depends on the ability of energy to flow radiatively out of the
denser fluid, and thus to separate itself from the stabilizing influence
of the higher molecular weight. Semi-convection is one of a large
class of “double-diffusive” and “multi-diffusive” processes known to
astrophysicists and geophysicists.

The criterion (1.8.5) shows that there is instability when | 4L | is
large, and (1.3.4) shows that this tends to occur when & or L/r? are
large. Detailed calculations show that (1.8.3-5) are violated in the
outer layers of stars with cool surfaces (including the Sun) because at
low temperatures « is large, and near the energy-producing regions
of luminous stars, where L/r? is large.
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1.8.2 Consequences  Suppose (1.8.3-5) are violated; what then? It
is clear that the interchange of elements of matter which are unstable
against interchange will tend to reduce p,, and to increase p;, and to
increase S, and to decrease S;. The limiting state of this process is
to turn the violated inequalities (1.8.3-5) into equalities whch then
describe the variation of P, p, T, and S in the star. Any one of these
equalities (they are all equivalent) then replaces (1.3.4) in describing
the thermal structure of the star. In other words, the effect of con-
vective instability is to eliminate the conditions which gave rise to it.
This is a natural and plausible hypothesis which is widely assumed
in turbulent flow problems. It cannot be exactly true; some small
excess ‘%‘ must remain to drive the convective flow.

A crude argument exists to estimate the accuracy of this ap-
proximation; the estimate is based on an adaptation of Prandtl’s
mixing length theory of turbulent flows. Although reality is surely
more complex, imagine that the turbulent flow is composed of dis-
crete fluid elements which rise or fall without drag forces (but remain
in pressure equilibrium with their surroundings) for a distance £ from
their origins. After travelling this distance they mix with their new
surroundings and lose their identity. Denote the excess of the temper-
ature gradient over the value given by (1.8.5) (taken as an equality)
by AVT; it is this quantity (called the superadiabatic temperature
gradient) we must estimate. After a rising fluid element has travelled
a distance dr its temperature exceeds that of its mean surroundings
by an amount AVTdr; its own thermodynamic state has varied ex-
actly adiabatically and it remains in pressure equilibrium with its
mean surroundings (both by assumption). A falling fluid element is
similarly cooler than its mean surroundings by AVTdr. The combi-
nation of rising warmer fluid and falling cooler fluid produces a mean
convective heat flux

H_.ppy ~ AVTdreppv, (1.8.6)
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where v is a typical flow velocity and cp is the specific heat at con-
stant P.

In order to estimate v we use the assumption that the only forces
acting on fluid elements are those of buoyancy. We have

AVp ([ B \AVT
p \y-a) T

p
~ =AVT 1.8.
, (1.8.7)

and the buoyancy force (which is proportional to dr) leads to a ve-
locity

2 = GM(r) ﬂ(dr)z N %ﬂ(drﬂ (1.8.8)

Now evaluate these expressions after fluid elements have travelled
half of the mixing length, so that dr = £/2:

cppl? |GM(r)
4 r2T

A sensible choice of £ is a matter of guesswork; it is usually taken

dlnp|—1
dr

of the Solar surface show that the convective motions are very com-

(AVT)3/2, (1.8.9)

Hcon’u ~

. Observations

to be comparable to the pressure scale height ‘

plex. The visible surface is divided into a network of small polygonal
cells, called granules, which are columns of rising fluid bounded by
regions of descending fluid. There is also a larger scale pattern of
supergranulation. These observations do not provide direct evidence
concerning the vertical mixing length, and flows in the observable
Solar atmosphere (where the scale height is small) may not resemble
those in deeper layers.

If £ is the pressure scale height and Hepny = L/(4772%) — Hg,
(where H,, is the radiative flux calculated in 1.7) then we can eval-
uate AVT and v at various places in a star. Our results may be

—4/3 2/3
(f) (t_h) (1.8.10a)
T tth

manipulated to yield

AVT ~ d—T
dr
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T , 2/3 t 2/3
2 2 -c¢ e “h
cea () (O ()" s

where the thermal time #;;, has been redefined (from 1.6.2) to include
only the thermal energy content of the convective region, T, is the
central temperature, and ¢, is the sound speed. For the convective
regions of the Sun (but not its surface layers) AVT ~ 10_6‘%
and v ~ 107%c, ~ 30 m/sec. Thus the adiabatic approximation
to the structure of a convective zone—the adoption of (1.8.3-5) as
equalities—is usually justified to high accuracy, even though the es-
timates (1.8.6-9) are very crude. Similarly, characteristic hydrody-
namic stresses are ~ pv? ~ 1078P, which establishes that the as-
sumption that fluid elements remain in hydrostatic equilibrium also
holds to high accuracy. The time for fluid to circulate through the
Solar convective region is ~ /v ~ 1 month, which is short enough
to guarantee complete mixing.

These approximations break down in the surface layers of stars,
as shown by equations (1.8.10). In these layers the scale height and
£ become small, as do p, T, and t, (t4n ~ cppT¢/H). It is not
possible to calculate quantitatively the structure of these layers. This
problem is most severe for cool giants and supergiants, where 7" and
especially p become very small. Their surfaces may not be spherical
or in hydrostatic equilibrium, but may rather consist of geysers or
fountains of gas which erupts, radiatively cools, and then falls back.

It is important to realize that H.y,, (1.8.9) is not directly re-
lated to or limited by the pressure gradient, unlike the radiative H,,
(1.7.17). This means that in stellar interiors convection may carry a
nearly arbitrarily large luminosity, and the Eddington limit Lg does
not apply.

Near stellar surfaces this problem is more complicated because
there AVT becomes large for large H yy,. In the low densities of stel-
lar atmospheres convection is incapable of carrying a large heat flux
because the thermal energy content of the matter is low, and energy
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must flow by radiation. For hot stars the opacity is essentially con-
stant and radiative transport in the upper atmosphere imposes the
upper bound Lg on the stellar luminosity. For cool giants and super-
giants the opacity in the upper atmosphere may be extremely small,
and no simple bound on the luminosity exists. The actual luminosity
of fully convective stars is determined by these surface layers in which
the approximation of nearly adiabatic convection breaks down, and
no satisfactory theory exists.

1.9 Constitutive Relations
Each of the constitutive relations (1.3.5-7) is an extensive field of
research which extends far beyond the scope of this book. This

section presents only the sketchiest overview of a few qualitative
conclusions which should be familiar to every astrophysicist.

1.9.1 Adiabatic Exponent Here we derive a few useful results. Be-

cause stars are large and opaque, and t;j is usually long, we are often
concerned with the properties of matter undergoing adiabatic pro-
cesses.

Consider a perfect gas which satisfies the equation of state

(1.4.5)
pNAkBT

7
where we now neglect radiation pressure. For a gram of gas under-

P = (1.9.1)

going a reversible process
dQ = dU + PdV (1.9.2)

where d() is an infinitesimal increment of heat, U (V,T) is the inter-
nal energy per gram, and V = 1/p is the volume per gram. We



Constitutive Relations 41

define a perfect gas by the condition that U/ depend only on T
UV, T)=Uu(T).

The specific heats at constant pressure and at constant volume,
cp and cy respectively, are defined:

_ dQ
dQ
= — 1.9.
Cy dT V, ( 9 3b)

where the subscript denotes the thermodynamic variable to be held
constant. From (1.9.2), using (1.9.1) to eliminate P

dU
= 1.94
cy qT (1.9.4a)
dU Nakp
= — . 1.94
P = o + y (1.9.4b)

The definition of an adiabatic process is that d@) = 0. From the
preceding equations and definitions we find for such a process

0 = cvdT + (cp — cv)édV. (1.9.5)

Defining v = cp/cy yields
0=dInT+ (y—1)dInV. (1.9.6)
Integrating this equation, using the definition of V" and (1.9.1), yields
P p. (1.9.7)

The ratio of specific heats depends on the atoms or molecules
making up the gas. By explicit calculation of U for a perfect gas it
is easy to see that

y=— (1.9.8)
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where ¢ is the number of degrees of freedom excited per atom or
molecule. For a monatomic gas ¢ = 3, for a diatomic gas in which
the vibrational degrees of freedom are not excited (such as air under
ordinary conditions) g = 5, while for a gas of large molecules or one
undergoing temperature-sensitive dissociation or ionization ¢ — oo.
In stellar interiors we may usually take ¢ = 3 and v = 5/3, except in
regions of partial ionization or where radiation pressure or relativistic
degeneracy are important.

In this simple derivation it was necessary to assume a perfect gas
and to exclude radiation pressure. These may be included, but lead
to much more complex results. For a gas consisting only of radiation
this derivation is invalid because cp — o0; T is a unique function
of P so that at fixed P no amount of added energy can raise the
temperature.

i From the relation (1.9.7) describing adiabatic processes we can
derive a relation between P and the internal energy per volume &.
Taking logarithmic derivatives of (1.9.7) and using the definition of
V' we obtain

VdP = —yPdV. (1.9.9)

Adding PdV to each side gives

VdP + PdV = —(y — 1)PdV (1.9.10a)
d <ﬂ> = —PdV. (1.9.100)
v—1

In an adiabatic process the work done by the fluid on the outside
world is —PdV, so that (1.9.10b) has the form of a condition of
conservation of energy for the fluid, with the left hand side being
the increment in internal energy. Then the internal energy per unit
volume & is given by

E=——. (1.9.11)
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The order of the manipulations between (1.9.7) and (1.9.11) may be
reversed, so that these two relations are equivalent.

It is important to note that the equivalence between (1.9.7) and
(1.9.11) does not require the assumption of a perfect gas or the def-
inition of the specific heats, so that it applies even where it is not
possible to derive v as a ratio of specific heats. The most important
application of this is to radiation. From (1.7.12) (or 1.7.7), for a
black body radiation field &,44 = 3P,44, so that v = 4/3 and (1.9.7)
describes adiabatic processes in a gas of equilibrium radiation.

1.9.2 Degeneracy The matter in degenerate dwarves, the cores
of some giant and supergiant stars, and in neutron stars is Fermi-
degenerate. By this we mean that the thermal energy kT is much
less than the Fermi energy er (or, more properly, the chemical po-
tential of the degenerate species), so that states with energies up to
er are nearly all occupied, and those with higher energies are nearly
all empty. This resembles the familiar metallic state of matter. The
degenerate species is usually the electron; in neutron stars free neu-
trons are also degenerate, hence their name.
The density ng of the degenerate fermion species is given by

4 1
ng =2 <§7rp3jm) g (1.9.12)

where pr is the momentum corresponding to the Fermi energy ep.
This is a standard result of elementary statistical mechanics, ob-
tained by counting volumes in phase space, or by calculating the
eigenstates of free particles in a box. The factor of 2 comes from the
statistical weight of spin 1/2 particles.

For noninteracting nonrelativistic particles of mass mg we have

p% 2/3
€F = 2y xny”, (1.9.13)
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while characteristic Coulomb energies vary with density as ec
e2n(11/ % Thus at high densities ep > ec and degenerate electrons
may be accurately treated as non-interacting particles. This makes
the calculation of their equation of state easy and accurate, because
the complex band structure of ordinary metals (for which e ~ €¢)
may be neglected. The cohesion of ordinary metals (the fact that
they have P = 0 at finite ng4) requires that ec be comparable to ep.

The pressure and internal energy of noninteracting degenerate

nonrelativistic particles are found by integrating over their distribu-

DF 2 3
P:/ pmvzﬁdp
0

1 PF 5 2 d3
== mqu-——=a"p
3Jo B (1.9.14a)
B 87rp‘}
"~ 15mgh3
x p5/3

tion function:

PF

(1.9.14b)

where we have used the fact that (pyv,) = %(vam + pyty + pov,) =
%(pv} for a distribution function which is isotropic in 3-dimensional
momentum space; here unsubscripted p and v denote their magni-
tudes. The relation between £ and P, which corresponds to y = 5/3,
depends only on the fact that the particle energy ¢, = %pv, and
not on the form of the distribution function; hence it applies to all
noninteracting gases of nonrelativistic particles, whether degenerate,
nondegenerate, or partially degenerate (ep =~ kpT).

If the density is very high most of the particles are relativistic,
€p ~ pc and v, = cpy/p. If we assume this relation holds exactly
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over the entire distribution function then

B3
1 [Pr 2
_ - _d3
3/0 Pehs® P (1.9.15a)
2mepy
3h3
x pt/3
PF 92
5:/ c—d?
o Pnst? (1.9.15b)
=3P

The relation between £ and P, which corresponds to v = 4/3, de-
pends only on the relativistic relation €, = pc, and not on the form
of the distribution function; hence it applies to all noninteracting rel-
ativistic gases whether degenerate or not; it even applies to bosons,
which is why we recover the relation (1.7.12) for photons.

Between the nonrelativistic and relativistic limits is a regime in
which neither (1.9.14) nor (1.9.15) is accurate, and 4/3 < v < 5/3.
This transition occurs for pp & mgye, which by (1.9.12) occurs at a

density
_ 8mmjc?

ng ~ W

For degenerate electrons this corresponds to p ~ 2 x 10° gm/cm?3,

(1.9.16)

while for neutrons p ~ 10'® gm/cm3. These are, to order of magni-
tude, the characteristic densities of degenerate dwarves and neutron
stars respectively.

The regions in the p - T' plane in which various approximations
to the equation of state hold are shown in Figure 1.2. Quantitative
calculations exist for the intermediate cases. The regions occupied
by the centers and deep interiors of ordinary stars and of degenerate

dwarves are shown.
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Figure 1.2. Equation of State Regimes.

The results (1.9.14) and (1.9.15) are only rough approximations
for degenerate neutrons, because neutrons interact by strong nu-
clear forces, which are attractive at relatively large distances (several
x10713 cm) but which are strongly repulsive at shorter distances.

1.9.3 Opacity A quantitative calculation of the opacity of stel-
lar material requires elaborate calculations involving the absorption
cross-sections of the ground and many excited states of many ionic
species. Such calculations have been performed, and their results are
available for quantitative work. It is still important to be aware of a
few qualitative principles.
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In all ionized matter free electrons scatter radiation, a process
called Thomson or Compton scattering. For nondegenerate electrons,
in the limits hv < mec? and kgT < m.c? the scattered radiation
has the same frequency as the incident radiation, and carries no net
momentum. The scattering is not isotropic, but for all 0 < ¢ < 7/2
scattering by angles 1) and by m—1) is equally likely; for most purposes
it may be treated as if it were isotropic. The total scattering cross-
section (2.6.3) is 33%6; = 6.65 x 1072° cm?. For matter of the
usual stellar composition (70% hydrogen by mass) this produces an

electron scattering opacity
Kes = 0.34 cm? /gm. (1.9.17)

Because this opacity is essentially independent of frequency and tem-
perature in fully ionized matter, (1.9.17) is usually a lower bound on
the Rosseland mean opacity. The only circumstances in which the
opacity of stellar matter may be significantly less than this value are
when it is degenerate (electron scattering is suppressed because most
outgoing electron states are occupied), or when it is cool enough that
most of the electrons are bound to atoms. The total opacity drops
below the value given by (1.9.17) for T < 6000°K.

A free electron moving in the Coulomb field of an ion may ab-
sorb radiation; this process is called free-free absorption or inverse
bremsstrahlung. Its quantitative calculation is rather lengthy, but
a simple semiclassical result is informative. This may be obtained
by using the classical expression (2.6.12) or (2.6.15) for the power
radiated by an accelerated charge (an electron in the Coulomb field
of the ion) to calculate the emissivity, and using the condition of
detailed-balance (1.7.13) to obtain from this the opacity. The re-

1y=3, where

sulting cross-section per electron is proportional to n;v~
n; is the ion density, v is the electron velocity, and v is the photon
frequency. For a typical electron v will be comparable to the ther-

mal velocity, so v &« T2, and for a representative photon hv o T.
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Rough numerical evaluation of the Rosseland mean leads to

KR~ 1023# cm?/gm; (1.9.18)
this expression is only approximate. The functional form of (1.9.18)
is known as Kramers’ law.

The photoionization of bound electrons (from both ground and
excited states) produces bound-free absorption. Its frequency de-
pendence above its energy threshold is usually similar to the v—3
of free-free absorption, but the abundances of the various ions, ion-
ization states, and excitation levels must be considered too. The
resulting mean opacity roughly follows Kramers’ law, and is of the
same order of magnitude as that attributable to free-free absorption.

Any Kramers’ law opacity is large at low temperature and high
density. At high temperature or low density electron scattering is
the principal opacity. The dividing line is approximately given by
T ~ 5x10%p%/7 °K. At low temperatures (T < 10000°K) the number
of free electrons becomes small and most photons have insufficient
energy to ionize atoms; consequently, the opacity drops precipitously
and falls below k5.

The serious user of quantitative opacity information will use
the tables which have been computed, but a few further qualitative
points should be made:

Because the Rosseland mean is a harmonic mean, the various
contributions to the mean opacity are not additive unless they have
the same frequency dependence.

Absorption opacities contain a factor [1—exp(—hv/kpT)] whose
physical origin is the effect of stimulated emission. This must be
included when the Rosseland mean is computed; it is implied by the
factor of this form contained in B, in (1.7.13); LTE of the atomic
and ionic levels has been assumed.

Scattering opacities do not contain a stimulated emission factor
if the scattering conserves frequency. The total rate of scattering
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from state ¢ to state f is proportional to n;(1+ny), where n; and ny
are the occupation numbers of the corresponding photon states; n;ny
is the rate of stimulated scattering. ;From this must be subtracted
the rate n¢(1+n;) of scatterings from f to i. The net rate is propor-
tional to n; — ng, where n; gives the scattering rate implied by the
scattering cross-section without any stimulated scattering term, and
ny gives the the scattering contribution to the source term j. The
absence of an explicit stimulated scattering factor is of little impor-
tance in stellar interiors, but may be significant in laser experiments
in which n; and ny may be very large.

Degenerate matter, like ordinary metals, is a good conductor
of heat, and in it the radiative transport of energy is usually in-
significant. Because the conductive heat flux is proportional to the
temperature gradient, a relation like (1.3.4) may be defined in which
k includes also the effects of conduction.

1.9.4 Thermonuclear Energy Generation = Many nuclear reactions

are involved in the thermonuclear production of energy and the trans-
mutation of lighter elements into heavier ones. Each presents special
problems. Here I briefly discuss a few general principles. Quanti-
tative calculation of reaction rates in stellar interiors requires more
careful attention to many details; see, for example, Clayton (1968)
and Harris et al. (1983).
The radius of a nucleus containing A nucleons is approximately
given by
R~ 1.4x10"183A4Y3cm. (1.9.19)

The electrostatic energy required to bring two rigid and unpolarizable
spherical nuclei of radii R; and Ry and atomic numbers Z; and Z5
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into contact, if their charges are concentrated at their centers, is

Z1Z262 ~ Z1Z2

= ~ MeV. 1.9.20
Ry + Ry Ai/3 +A;/3 © ( )

C

Once the nuclei touch strong attractive nuclear forces take over. In
the centers of main sequence stars kg7 is in the range % — 4 KeV so
that it is evident that conquering the Coulomb barrier is the chief
obstacle to thermonuclear reactions.

The Coulomb barrier is overcome by tunnelling, in a manner
first calculated by Gamow; nuclei with energies much less than F¢
may (infrequently) react. We work in the center-of-mass frame of the
two nuclei, so that m = %1%2 is their reduced mass, r their sepa-
ration, and k = \/2mFE, /h and FE, are the wave-vector and kinetic

energy at infinite separation. The barrier tunnelling probability P,

is calculated in the W. K. B. approximation as

"o [2me2Z1 7.
Py ~ exp (—2/ \/% — k? dr) =exp(—-Z), (1.9.21)
R T

where we write only the very sensitive exponential term, neglecting

more slowly varying factors. Here R = R; + Ry is the separation

at contact (within which the nuclear interactions make the potential

2me221 Z2
RZk?

integrand is zero), and the subscript 0 indicates that we consider only

attractive), r, = is the classical turning point (at which the

the [ = 0 partial wave. Higher angular momentum states produce
much smaller Pj.
The exponent in (1.9.21) may be calculated:

I:Qk/o,/ri—mr
R T

1
- 4kro/ V11— 2 dc,

\R/To

(1.9.22)
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where ( = \/r/r.. Now y/R/r, < 1 so that we may expand the
integral in a power series in \/R/r, with the result:

1 \/R/To
I:4kro(/ mdg—/ 1d§+--->
’ ’ (1.9.23)

T R
—4]’67‘0(Z— E‘F)

The leading term in (1.9.23) does not depend on R at all; this is
fortunate because it implies that to a good approximation the result
is independent of the nuclear sizes or to the form of the potential
near nuclear contact, where it is poorly known. We now have
2

7= @ 2E—m . 4% 9mZy ZoR + - (1.9.24)
The second term is independent of energy; it affects the reaction rate
but we do not consider it further. The third and higher terms are
small. The first term is large and after exponentiation makes the
reaction rate a sensitive function of E.

We now must average the reaction rate over the thermal equi-
librium distribution of nuclear kinetic energies. When we transform
variables from the velocities of the reacting nuclei to the center-of-
mass and relative velocities v, and v,., we find that the kinetic
energy s Miv? + tMyvd = L(My + My)v2,, + 3mv2,, so that the
distribution function of the relative motion of the reduced mass m is
Maxwellian at the particle temperature 7. Then the total reaction
rate is given by the average over the distribution function (ov,e),
where ¢ is the reaction cross-section and contains the critical factor
exp(—Z). Aside from slowly varying factors this leads to

> FE B
vol) ~ _ T _ 2 ) dE, 1.9.25
(OVper) /0 exp( T \/E> ( )
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where B = 121 Zye?\/2m /h.

The first term in the exponent in (1.9.25) declines rapidly with
increasing F, while the second increases rapidly. For B? > kT
(almost always the case) their sum has a fairly narrow maximum,
and when exponentiated the peak is very narrow. We therefore find
the maximum and expand around it. By elementary calculus

E B _ 3Eg 3 B
kBT \/E_ k‘BT 8Eg/2

(E—-Eg)*+---, (1.9.26)

where the Gamow energy Eg has been defined

BkaT 2/3
EGz( k; > . (1.9.27)

Now the integral in (1.9.25) may be carried out by taking only the
first two terms of (1.9.26) and extending the lower limit of integration
to —oo, with the result

SrE>/? 3Eg
<0Urel> ~ G €xXp (_—)
3B kBT (1.9.28)
~ exp [_3 (%) 1/3:|
2h2kgT ’

where in the last expression the slowly varying factor has been
dropped, as similar factors were before, leaving only the dominant
exponential dependence. This result gives the dominant temperature
dependence of nonresonant thermonuclear reactions.

Under typical conditions of interest the argument of the cube
root in (1.9.28) is ~ 10%. Tt is therefore apparent that Py and (ovy.e;)
are very small, as must be the case, in order that the nuclei in a
dense stellar interior survive for 10-10'° years before reacting. It is
then evident that the reaction rate is a steeply increasing function of
T, and a steeply decreasing function of Z;7;. The sensitivity to T



Constitutive Relations 53

implies that thermonuclear energy generation acts nearly as a ther-
mostat when in a star whose effective specific heat is negative (see
1.5), and tends to produce rapid instability when the effective spe-
cific heat is positive (as is the case in degenerate matter or for thin
shells). It also means that when energy is produced by a given nuclear
reaction T is a weak function of the other parameters. The sensitiv-
ity to Z1Z5 implies that in most circumstances the reactions which
proceed most rapidly are those with the smallest product Z;Zs.

Real nuclear physics makes the problem more complex. If the
reaction of interest is resonant at near-thermal energies (as some
important ones are) this may increase the reaction rates by a large
factor. The peculiar properties of nuclei with A = 2, 5, and 8 are
also worthy of note:

The only stable nucleus with A = 2 is the deuteron. To produce
it from protons requires the reaction

p+p—D+et + .. (1.9.29)

Because this reaction depends on the weak interaction (it amounts to
a [-decay from an unbound diproton state), its rate is many orders
of magnitude lower than would otherwise be the case. Yet there is
no other direct way of combining two protons; the diproton is not
a bound nucleus at all, but is better described as a pole of the p-p
scattering matrix. Were the diproton bound, stars (and the uni-
verse) would be very different. Because (1.9.29) is so slow, a cat-
alytic process known as the CNO cycle proceeds more rapidly in
stars more massive than the Sun, even though it requires reactions
with 217, = 7.

There are no stable nuclei with A = 5 or 8, so that helium nuclei
cannot react with each other or with protons. More exotic reactions
(such as 3He + “He, or He + Li) also do not cross the A = 8 barrier.
The only way to build nuclei heavier than A = 8 is by the process

at+a+a=22C" 22C+y+7, (1.9.30)
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where the asterisk denotes the 7.654 MeV excited state and the right
hand side indicates two successive radiative decays. This process is
resonant because the energy of 2C* is only E, = 379 KeV above
that of three a-particles. In (1.9.30) the decay rate T, of ?2C* to
the left is much faster than that I'., to the right; the excited state is
in thermal equilibrium with the a-particles, and its density n, may
be calculated from the Saha equation, with the result:

h2 \° [(3ma\*?
Ny =n (27rkBT> (m;‘) exp(—E,/kgT), (1.9.31)

where n, and m, are the a-particle density mass.

The exponential in (1.9.31) contains the critical temperature
dependence, which is characteristic of resonant reaction rates and
is even steeper than that of (1.9.28). The factor Py need not be
calculated explicitly because it enters in both directions on the left
hand side of (1.9.30). A steady state abundance of 12C* is achieved in
a time ~ 't ~ 10719 sec. In practice, (1.9.30) proceeds through the
unbound ®Be nucleus (a scattering resonance only 92 KeV above the
energy of 2 a-particles), rather than through a triple collision, but
this does not affect the thermodynamic argument or the result. The
reaction rate is n,I',. The presence of an excited state of 12C at the
right energy to facilitate (1.9.30) is the reason carbon is a relatively
abundant element in the universe; this is apparently fortuitous unless
one attributes it to divine intervention, or argues that if it were not
there we would not be present to observe its absence.

1.10 Polytropes

The solution of the equations (1.3.1-4) of stellar structure is com-
plicated, because the equation of hydrostatic equilibrium (1.3.1) is
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coupled to the equation of energy flow (1.3.4) through (1.3.3) and the
constitutive relation among P, p, and T'. This problem is now readily
handled numerically, even if some of the assumptions (most impor-
tantly, that of a thermal steady state) made in deriving (1.3.1-4)
are relaxed. In the early (pre-computer) decades of stellar structure
research this was not possible, and calculations of models simplified
still further were performed. These methods are of more than histor-
ical interest, because the very simplified models which they produced
are still powerful qualitative tools in understanding stars. They can-
not replace modern computational methods of obtaining quantitative
results, but they are much more transparent than a table of num-
bers, and therefore are very helpful to the astrophysicist who needs
a qualitative understanding of the properties of self-gravitating con-
figurations of matter.

A polytrope is a solution of the equation of hydrostatic equi-
librium (1.3.1) under the assumption that the pressure P and the
density p are everywhere related by the condition

n+1
n

P=Kp (1.10.1)
The quantity n is called the polytropic index.

This relation is formally identical to the adiabatic relation
(1.9.7) if v = 2L but their meanings are quite different. Equation
(1.9.7) describes the variation of the properties of a fluid element
undergoing an adiabatic process. Equation (1.10.1) constrains the
variations of P and p with radius in a star, because if r is introduced
as a parameter it relates P(r) and p(r). A star may be described
by (1.10.1) even if the thermodynamic properties of its constituent
matter are described by an adiabatic exponent v different from "TH

Equations (1.10.1) and (1.9.7) are equivalent if a star is neu-
trally stable (equivalently, marginally unstable) against convection,

so that the actual dependence of P on p in the star is the same as
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the adiabatic one. This will be the case in a star which is com-
pletely convectively mixed, as is believed to be the case for very low
mass main-sequence stars (M N 0.2Mg). The envelopes of red gi-
ants and supergiants are mixed, and also resemble polytropes if the
gravitational influence of their dense cores may be neglected (a fair
approximation if the envelope is very massive). In each of these cases
n = 3/2; the deep convective envelope is a consequence of the high
radiative opacity in the surface layers. Very luminous and massive
stars also possess extensive mixed inner regions, and their envelopes
are not far from convective instability. For these stars n ~ 3; con-
vection is a consequence of their large luminosity.

The assumption of (1.10.1) in place of (1.3.4) permits the stellar
structure equations to be reduced to a single nonlinear ordinary dif-
ferential equation characterized by the parameter n. This equation
is readily integrated numerically (even without computers!). Elimi-
nating M from (1.3.1) and (1.3.2), we obtain

1 d (r2dP
—— | ——— | = —4nGp. 1.10.2
r2 dr < p dr) =P ( )
Dimensionless variables are defined: ¢"™ = p/p. and £ = r/«a, where
pe is the central density, and the characteristic length (not the radius)
(1-n)/n

a= [%} Y2 Substitution of these variables and (1.10.1)
into (1.10.2) yields the Lane-Emden equation:

1 d [ ,d¢ n
& < d—£> = —¢". (1.10.3)
The boundary conditions at £ = 0 are ¢ = 1 and % = 0. The
surface is defined as the smallest value of ¢ for which ¢ = 0 (the
solution for larger £ is of no physical significance). Once a numerical
integration in the dimensionless variables has been tabulated, it is
readily applied to a star of specified p. and K by using the definitions
of ¢ and €&.
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Polytropes with certain values of n are of special interest. The
ratios of the central density p. to the mean density (p) indicate the
degree to which mass is concentrated in their centers, and are a
convenient one-parameter description of their structure.

If n = 0 then (1.10.1) corresponds to an incompressible fluid
(only one value of p is permitted) and p./(p) = 1. The definitions
of ¢, a, and K become indeterminate; with a little care they could
be redefined, but there are easier ways of calculating the radius and
pressure distribution of a sphere of incompressible fluid.

If n =1 (1.10.3) is linear and may be integrated analytically,
with the result ¢ = siné /€. Here p./{p) = 3.29.

If n = 3/2 (1.10.1) corresponds to an adiabatic star with v =
5/3, and is therefore a good description of fully convective stars with
this equation of state. The calculated p./{p) = 5.99 is the lowest such
value which may be obtained for stars composed of perfect gases.

If n =3 (1.10.1) corresponds to an adiabatic star with v = 4/3,
and is therefore a good description of fully convective (or nearly
convective) stars with this equation of state. It also turns out that
an n = 3 polytrope is a fair description of the density structure
p(r) of stars in the middle and upper main sequence. Their deep
interiors have steeper density gradients than they would if they were
convective, but the adiabatic vy is larger than that of a fully convective
n = 3 polytrope (for which v must be 4/3); these two effects roughly
cancel. For an n = 3 polytrope p./{p) = 54.2. In the present-day
Sun this ratio is calculated to be close to 100, while when the Sun was
young it was about 60 (the difference results from the depletion of
hydrogen and the increase in the molecular weight in the core). The
structure and properties of an n = 3 polytrope are widely used when
a rough but convenient model of a star is needed for more complex
calculations.

If n =5 (1.10.3) may also be solved analytically, with the result
¢ = (14 ¢2/3)~Y/2, For n > 5 the radius is infinite because ¢ never
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drops to zero.

If n — oo (1.10.1) approaches an isothermal equation of state.
The definition of ¢ becomes improper, but (1.10.2) is readily inte-
grated without using (1.10.3). At large r, p oc 7=2 and M(r) o 7,
so that both the radius and the total mass diverge. Such configura-
tions do not describe stars. The upper atmospheres of stars may be
isothermal but their structure does not approach an n = oo polytrope
except at very large radii and extremely small density. Long before
this the assumption of hydrostatic equilibrium will have failed be-
cause of the forces applied by the interstellar medium. These n = oo
polytropes may describe the structure of gravitating clusters of col-
lisionless objects (clusters of stars or of galaxies, for example).

1.11 Mass-Luminosity Relations

In 1.4 we derived scaling relations and made order-of-magnitude es-
timates for the characteristic p, P, and T of a star of given mass
M and radius R. We now make similar approximations to estimate
the relation between L and M of a main sequence star. As in 1.4,
our results are not meant to be numerically accurate, but rather to
be an illuminating guide to the governing physics of stars of various
masses.

We begin by defining 3, the ratio of the gas pressure to the total
pressure:

P, =P (1.11.1a)
P, =(1-p)P. (1.11.1b)
The parameter § is a function of 7" and p and, in general, varies

from place to place within a star. Here we assume that it is a con-
stant throughout a given star. This is true for an n = 3 perfect
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gas polytrope, because in such a polytrope the variations in p and
T are related by p o< T™, so that the two terms in (1.4.5) vary in
proportion. Stars on the middle and upper main sequence are ap-
proximately described as n = 3 polytropes, so that for them our
results, derived assuming a constant [, are fair approximations to
reality.

Now rewrite (1.3.4) or (1.7.19) in the form

AP, (r) _ w(r)p(r)L(r)

= 1.11.2
dr Awer? ( )
and divide this equation by (1.3.1). The result is
dP, L
_ _H)L(r) (1.11.3)

dP  4mcGM(r)’

Drop the explicit dependence on r, and use (1.11.1) to rewrite this
in terms of a constant f:

I_ AdrcGM
K

(1-B). (1.11.4)

This equation is a fundamental relation among L, M, k, and B.
Because 8 > 0 it implies an upper limit on the radiative luminosity
of a star.

In hot, luminous stars K & ks (1.9.17), so that

L=Lg(1-p), (1.11.5)

where the Eddington limiting luminosity Lg is defined

AreGM
Lp= meGM _ | 47« 10788

Kes sec Mg

M
=3.77 x 104 (—) Lo.
My ) ©

(1.11.6)
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Therefore, Lg is the upper limit to the radiative luminosity of hot
stars. As discussed in 1.8, it does not properly apply to the convec-
tive luminosity; it probably does still limit the luminosity of hot con-
vective stars because their luminosity must flow radiatively through
their atmospheres, where convection is ineffective. Cool supergiants
may perhaps evade the limit (1.11.6) because x may be very small in
their cool atmospheres, but there is no evidence that they actually
do so.

We can also express  in terms of p and T, and by so doing
obtain a unique (though very approximate) relation between L and
M. (From the definitions of Py, P,, and P (1.4.5) we obtain, after

eliminating T',

4. o71/3
pP= [Z (N’;‘fB) 1ﬁ4ﬁ] p*/3, (1.11.7)

Now use the relations (1.4.6,7) to express the dependence of P and
pon M and R. In order to obtain a more useful numerical result we
take the actual values of the coefficients which have been calculated
for an n = 3 polytrope. The result is

1-p

B

This is known as Eddington’s quartic equation. From it we may

obtain (M) and L(M). Note that 8 and L do not depend explicitly
on R.

At low masses (M pu? < 20Mg, which includes nearly all stars)

B —1and 1 — 8 o u*M?. ;From (1.11.4), dropping the p depen-

dence, we obtain the mass-luminosity relation for constant :

M 2
=2.979 x 10734 <M—) : (1.11.8)
©

L oc M3, (1.11.9)

this describes main sequence stars with x =~ k.; and holds for
Mo < M < 50M.



Mass-Luminosity Relations 61

For stars of yet lower mass, x is roughly described by Kramers’
law (1.9.18). If we use (1.4.6,8) to determine T and p in Kramers’
law, then

Loc MPY2R=Y2 oc MO, (1.11.10)

where the last relation assumed M o< R, which is implied by the
approximation (1.9.4) that thermonuclear energy generation makes
the central temperature nearly independent of M.

The Sun is very near the transition between (1.11.9) and
(1.11.10), and has 3 ~ 0.9996. Very low mass stars (M ~ 0.2My) are
fully convective and their luminosity is determined by their surface
boundary condition; the relations of this section do not apply.

Although these results are only approximate, it is evident that
L is a steeply increasing function of M; massive stars are dispro-
portionately luminous and short-lived, and low mass stars are dis-
proportionately faint. Very massive stars are also much rarer in the
Galaxy than low mass stars, so that they do not overwhelmingly
dominate the total luminosity produced by stars; stars of moderate
(Solar) mass are not insignificant. If one picks a photon of visible
starlight in the Galaxy (or, similarly, chooses a star randomly on the
sky), there is a significant chance that it will have come from a star of
moderate mass. Very low mass stars, however, are so faint (1.11.10)
that they contribute little to the starlight of the night sky.

For very large masses (M R 50Mg) B o« M~Y2 — 0 and
L — Lg, so that

L x M. (1.11.11)

Stars this massive are very rare or nonexistent, but (1.11.11) repre-
sents a limiting relation which is approached by the most massive
and luminous stars.

The relations in this section are inapplicable to stars far from the
main sequence. In degenerate dwarfs the pressure is almost entirely
that of electron degeneracy, which was not included in (1.4.5). As
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a result 7' is much lower than (1.4.8) would suggest for these dense
stars, and L is lower by several orders of magnitude. This was a
puzzle until electron degeneracy pressure was understood. White
dwarfs slowly cool to a state in which T =0, 8 =1, and L = 0, in
complete contradiction to (1.11.8).

The internal structures of giants and supergiants differ drasti-
cally from those of n = 3 polytropes, with p./{p) larger by many
orders of magnitude. As a result, the approximate relations (1.4.6,7)
fail completely. The structures of these stars are discussed in 1.13.
An analogue of (1.11.8) may be obtained if, instead of (1.4.7), we

write

GM M
P~ — 1.11.12
R. R3’ ( )
where R. = (R is the core radius. Then we obtain
1-8 p*M?
G~ a (1.11.13)

Because ¢ < 1, the limit 8 — 0 is approached for much smaller M
than would otherwise be the case; this crudely describes the high
luminosity of giant and supergiant stars.

1.12 Degenerate Stars

The basic theory of cold degenerate stars was developed by Chan-
drasekhar, shortly after the development of quantum mechanics and
the Pauli exclusion principle made possible the calculation of de-
generate equations of state. His work was concerned with stars in
which the electrons are degenerate, known to astronomers as white
dwarves, and the discussion of this section generally refers to them.
The results and conclusions are also qualitatively (but not quanti-
tatively) applicable to neutron stars, in which degenerate neutrons
contribute most of the pressure.
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The theory of degenerate stars quantitatively predicts a rela-
tion between their masses and radii. It is possible to consider also
a number of small effects not included in the basic theory, such as
the effect of nonzero temperature, the structure of the nondegenerate
atmosphere, the thermodynamics of the ion liquid and its crystalliza-
tion, gravitational sedimentation in the atmosphere and in the deep
interior, ..., and to make detailed predictions about luminosities,
spectra, cooling histories, and other properties. Unfortunately, the
quality of the extant data is inadequate to test either the basic mass-
radius relation or these more sophisticated theories. Reliable masses
are known for only a very few degenerate dwarves, and accurate radii
for fewer (if any). Therefore, we are here concerned chiefly with their
most basic properties, for which the theory, based only on quantum
mechanics and Newtonian gravity, may be assumed with confidence.

In order to calculate the relation between the masses and radii of
degenerate stars, we should calculate the zero-temperature equation
of state P(p) for arbitrary density, including the important regime of
p ~ 10% gm/cm3 lying between the relativistic (1.9.15) and nonrela-
tivistic (1.9.14) limits. These calculations exist (see Chandrasekhar
1939), but a qualitative approach using the virial theorem may be
more illuminating.

The total energy E of a star is
E =Fjq+ Eip. (1.12.1)

The quantitative value of each of these terms depends on the detailed
forms of p(r), M(r), and £(r). Their scaling with M and R may be
simply written, using relations like (1.4.6,7)

GM?
R

R
M
Egrov = —/ p(r)GTllm'z dr=-A (1.12.2a)
0

R M Y
E; :/ E4nr? dr = BK (ﬁ) R3, (1.12.2b)
0
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where A and B are dimensionless numbers of order unity, and we
have written P = Kp” o< (M/R3)", as is appropriate for adiabatic
changes. For our qualitative considerations, we will assume that A
and B are independent of changes in R, although this is not accurate
except in the extreme nonrelativistic and extreme relativistic limits.

To compute the dynamical equilibrium radius of the star we
find the minimum of the function E(R). If v = 5/3 there is a stable

minimum FE at
2BK

R=emis

(1.12.3)

This result is strictly applicable only in the limit p — 0 (in order
that v = 5/3 hold exactly), R — oo, and M — 0.

(1.12.3) describes the mass-radius relation of low mass degener-
ate dwarves, for which v = 5/3 is a good approximation. (1.12.3)
applies also to any series of n = 3/2 polytropes with a given value
of K (equivalently, with a given specific entropy); if one adds to the
outside of such a star matter with the same K as that inside, it will
shrink. If mass is removed it expands. This is true both of degenerate
dwarves (for which S = 0) and of low mass nondegenerate stars. The
appearance of M in the denominator of (1.12.3) may be surprising;
it is a consequence of the compressibility of matter and the increase
of the gravitational force with increasing mass.

For small bodies, like those of everyday life, the density is set
by their atomic properties, (1.9.14) is inapplicable, and R oc M/3
(this may be taken as the definition of a planet). Jupiter is near the
dividing line between these two regimes, and thus has approximately
the largest radius possible for any cold body.

If v = 4/3 the condition of minimum F is an equation for M, in
which R does not appear:

3/2
M= (%) | (1.12.4)
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Such a configuration is an n = 3 polytrope, and A and B may be
calculated from the known properties of polytropes. We know (see
1.5) that if v = 4/3 then E = 0, independently of R, so the absence
of R from (1.12.4) is no surprise. Because the binding energy is zero
and independent of R the radius is indeterminate.

More remarkable is the fact that a solution exists for only one
allowable mass! This mass is called the Chandrasekhar mass M¢y,.
Numerical evaluation for the relativistic degenerate equation of state
(1.9.15) gives

Mcy, = 5.75Mg /12
< he >3/2 (1.12.5)
~ mp.

2
Gmp

Calculations of stellar evolution and nucleosynthesis indicate
that real degenerate dwarves will be composed principally of car-
bon and oxygen; in the special case in which they are built up
by the gradual accretion of matter supplied from the outside they
may be principally helium. For all of these elements the molecular
weight per electron p. = 2. Mcy, is reduced slightly below the value
given in (1.12.5) by some small effects; the final numerical result is
Mep, = 1.40Mg (Hamada and Salpeter 1961).

The unique mass (1.12.4,5) and indeterminate radius apply only
in the limit R — 0 and p — oo, because only in this limit is v = 4/3
exactly. Between this singular solution and the low density limit
(1.12.3) there are solutions in which 4/3 < v < 5/3, and the equa-
tion of state is only partly relativistic. These solutions are not poly-
tropes (because v is not constant within them), but are readily calcu-
lated. Observed degenerate dwarves are believed to lie in the range
0.4Mg < M S 1.2Mg), and to be in this semirelativistic regime. Cal-
culations show that for these masses R =~ 6000(Mg/M) km is a fair
approximation; their characteristic density is p ~ 2 x 10 gm/cm?
(1.9.16). By using the virial theorem (1.5) we can also estimate
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the surface gravitational potential GM/R ~ m.c? (actual calculated
values are ~ 100 KeV /amu).

If M > Mgy, no zero-temperature hydrostatic solutions exist.
This is probably the most important result in astrophysics, because
it means that stars more massive than Mgy, must either reduce their
masses below Mcyp, end their lives in an explosion, or ultimately
collapse.

Equations (1.12.3,4) apply to nondegenerate stars as well. For
example, (1.12.4) describes the dependence of K on M for very mas-
sive stars, which approximate n = 3 polytropes because of the im-
portance of radiation pressure. The factor K has larger values for
nondegenerate matter than for degenerate matter, which has the
lowest possible P at a given p.

The discussion of this section also applies qualitatively to neu-
tron stars. Their characteristic density is determined by (1.9.16),
and is ~ (m,/me¢)® times larger than that of degenerate dwarves,
and their radii are ~ m./m,, times as large. Because K is inde-
pendent of mg in the relativistic regime (1.9.15), (1.12.4) predicts
essentially the same limiting mass for neutron stars as for degener-
ate dwarves. Their surface gravitational potential GM/R ~ m,,c?
(actual numerical values are believed to be ~ 100 MeV /amu). The
strong interactions between neutrons make (1.9.14,15) and (1.12.4)
rough approximations at best; the equation of state of neutron mat-
ter is controversial. However, the conclusion that as p — oo the
Fermi momentum pr — oo and v — 4/3, which implies an upper
mass limit M{;, is inescapable. The effects of general relativity are
also significant, and tend to increase the strength of gravity and to
reduce MGy, though they are not as large as the uncertainties in the
equation of state.

Most calculations agree that for neutron stars R ~ 10 km, ap-
proximately independent of mass for 0.5M S MR Mg;. The
value of M{; is also controversial, but it is probably in the range
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1.40Mg < M2 = 2.5Mg. The lower bound on Mg3 is firm, and
is obtained from the observation of neutron stars of this mass in
the binary pulsar PSR 1913+16, for which relativistic orbital effects
permit accurate determination of the the pulsar mass (this is the
only accurately determined neutron star mass). Because it is hard
to imagine the production of neutron stars except as a consequence
of the collapse of degenerate dwarves (or the degenerate dwarf cores
of larger stars), it is likely that most neutron stars have M > Mgy,
which also implies M77 > Mcp. The upper bound on M7} is less
certain, but uncontroversial properties of the equation of state imply
that it cannot much exceed 2.5M,.

It is frequently pointed out in nontechnical astronomy books
that a teaspoon (5 cm?®) of typical white dwarf matter has a mass
of about 10 tons. It is not usually added that the internal energy of
this teaspoonful is equivalent to that released by about 20 megatons
of high explosive.

1.13 Giants and Supergiants

Main sequence and degenerate stars may be approximately described
as polytropes. For giants and supergiants polytropic models and the
rough approximations of 1.4 fail completely. These stars contain
dense cores, resembling degenerate dwarves, and very dilute extended
envelopes. The ratio p./(p), which is 54.2 for an n = 3 polytrope,
may be ~ 102 (or more, in extreme cases).

The development of giant structure in a star is the outcome of
complex couplings among the equations (1.3.1-7). Their solutions,
obtained numerically, are the only proper explanation of giant struc-
ture, but it is useful to consider rough arguments. If the core and
envelope are considered separately, the approximations of 1.4, and
simple models, may still be qualitatively informative.
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A main sequence star will eventually exhaust the hydrogen at
its center, leaving a core of nearly pure helium. For stars of masses
approximately equal to or exceeding that of the Sun, this happens
in less than the age of the Galaxy. Stars have presumably been
born throughout that time (there are few quantitative data), so that
there now exist stars of a variety of masses which have helium cores.
Because the star continues to radiate energy, in a thermal steady
state hydrogen must continue to be transformed to helium. This will
happen in the hottest part of the star which contains hydrogen, a
thin shell just outside the helium core.

The helium core will be essentially inert. In steady state it
is isothermal at the temperature of the hydrogen burning shell at
its outer surface. Because of the thermostatic properties (1.9.4) of
thermonuclear energy release, we may roughly regard this shell as
having a fixed T, ~ 4 x 10™°K.

Once the core has accumulated a significant fraction (typically
8%) of the stellar mass, its temperature T is insufficient to satisfy the
equation (1.3.1) of hydrostatic equilibrium. Equation (1.4.8) explains
why; T is set by the shell temperature, and hence by the structure of
the outer star, but the core has a larger value of y (4/3 for helium)
and its higher density leads to a large M/R. It then contracts, pro-
ducing a higher T' (this process is stable, by the arguments of 1.5).
Now heat flows outward, which leads to yet higher T' (the negative
effective specific heat discussed in 1.5). The heat flow reduces the
entropy of the core, until its equation of state approaches that of
a degenerate electron gas; the core comes to resemble a degenerate
dwarf inside the larger star.

Core contraction will be interrupted when the temperature be-
comes high enough (T R 108°K) for reaction (1.9.30) to take place,
and exothermically to convert helium to carbon (auxiliary reactions
also produce oxygen and rarer elements). This leaves an inert carbon-
oxygen core surrounded by a double shell, the outer shell burning hy-
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drogen and the inner shell burning helium. Such double shells have
a complex and unstable evolution, but this is irrelevant to our rough
description of the structure of a giant star.

The combination of a degenerate dwarf core with a thermostatic
boundary condition produces the extended low density envelope of
a giant star. A simple argument uses the scale height of the matter
overlying the core. If L is not close to Lg radiation pressure is unim-
portant (see 1.11.5). An isothermal gas, supported in hydrostatic
equilibrium by gas pressure against a uniform acceleration of gravity
g = GM_/R?, has a density which varies as

p x exp(—r/h), (1.13.1)

where the scale height A is

, _ ReNakpT
GM.p
 RekpT
B

(1.13.2)

and Fj is the gravitational binding energy per nucleon. The matter
is not accurately isothermal and ¢ is not strictly constant, but for
h < R, these are good approximations. The approximations made
in 1.4 were equivalent to assuming h ~ R everywhere in the stellar
interior, and fail at the core-envelope boundary where h < R. < R.

For a degenerate core with M, = 0.7TMg, at r = R, we find
h/R. =~ 0.055 < 1. As a result, the density drops by a large fac-
tor in the region just outside the core boundary, where g is large.
If the envelope contains a significant amount of mass, as it will in
most giants, then this low density requires it to have a large volume
and a large radius. Very crudely, we might expect the radius to be
larger than that of a main sequence star (which the envelope would
otherwise resemble) by a factor ~ exp(R./(3h)) ~ 102 — 103, which
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is consistent with the radii of large red giants. If the core is more
massive the density will be yet lower and the radius yet larger. The
actual radius and T, of a red giant are determined by the surface
boundary conditions on its outer convective zone.

This argument is not applicable when L ~ Lg, because then the
scale height is larger by a factor 3~! > 1. Instead, we equate the
pressure of radiation to the pressure produced by the weight of the
overlying matter, so that

GM.p

gT;*N o (1.13.3)

For M, = 1.2Mg (B8 < 1 only as M, — Mg¢y,) and T, = 4 x 107°K
we estimate p ~ 0.02 gm/cm3. If the envelope roughly resembles an
n = 3 polytrope, as is likely, then its radius will be ~ 20R,. Such a
star is not nearly as large as a red giant or supergiant, but possesses
a less extreme form of their structure of dense core and extended
envelope. Because of its high luminosity and moderate radius its
surface temperature is high. These stars are found in a region of the
Hertzsprung-Russell diagram between the red supergiants and the
upper main sequence, called the horizontal branch (most horizontal
branch stars are produced differently, when rapid helium burning
increases R, and h).

1.14 Spectra

The study of astronomical spectra is a large field of research. Here
we only draw a few qualitative conclusions useful in modelling novel
objects and phenomena.

The radiation we observe from stars is produced in their at-
mospheres, and its spectrum reflects the physical conditions there.
These atmospheres may usually be approximated as plane-parallel
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layers, so that in the equation (1.7.6) of radiative transfer we may
neglect the term containing 1/r. Then

oI(r,9)

TCOS??—I(T,T?)-FS(T) =0, (1.14.1)

where the source function S(7) = j(7)/4nk(7), and the optical depth
7 is defined by d7 = kpdr, and 7 — 0 as r — o0. I, j, Kk, and T all
implicitly depend on v. For cos® > 0 this equation has the formal
solution

I(1,9) = / S(r") exp[— (7" — 7) secd] secd dr'. (1.14.2)
The emergent flux is that at 7 = 0:
1(0,9) = / S(7") exp(—7' sec ) secd dr'. (1.14.3)
0

The emergent flux is a weighted average of S over the atmosphere,
with most of the contribution coming from the range 0 < 7/ S cosd.

The opacity x, of matter typically has the form shown in Figure
1.3, with sharp atomic lines superposed on a slowly varying contin-
uum. The lines are those of the species abundant in the atmosphere,
which depend on its chemical composition, density, and (most sensi-
tively) temperature. In hot stars the strong lines are those of species
like He II and C III, in somewhat cooler stars those of He I or H I,
in yet cooler stars Ca I and Fe I, and in the coolest stars those of
molecules like TiO.

In the simplest stellar atmospheres matter is in thermodynamic
equilibrium, there is no scattering, S = B (the Planck function), and
the temperature increases monotonically inward. Then I reflects the
value of B in the region 7 ~ 1, and we may approximate I,(7 =
0) ~ B,(T(r, = 2/3)). At a line frequency v; the opacity £,, is
large and 7, = 2/3 high in the atmosphere, where T and B are low,
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Figure 1.3. Varieties of Spectra.

while outside the line x, is small and 7, = 2/3 much deeper in the
atmosphere. The result is an absorption line spectrum, as shown in
the figure.

In many stars the upper atmosphere is much hotter than the rest
of the atmosphere. In the Sun the upper atmosphere and corona are
heated by acoustic (or magneto-acoustic) waves generated within the

convective zone. In a few stars a strong radiation flux from a lumi-
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nous binary companion heats the upper atmosphere; this is found in
some companions to strong X-ray sources. When the temperature
profile is inverted in this manner there results an emission line spec-
trum, as shown in the figure. Often a weak emission line spectrum
from the highest levels of the atmosphere is superposed on a stronger
absorption line spectrum.

If line scattering opacity is important it may also produce an
absorption line, regardless of the temperature gradient in the atmo-
sphere. The mechanism is outlined in 1.7.3; the presence of scatter-
ing reduces the emissivity. At such frequencies the diffuse reflectivity
of the atmosphere is significant, so that a fraction of the flux is the
(zero) reflected flux of the dark sky. If there is significant scattering
opacity in the continuum, but the line opacity is absorptive, then the
sky is reflected in the continuum and the line will appear in emission.
These processes are known as the Schuster mechanism.

In a dilute gas cloud the upper limit in the integral (1.14.3) is
Tmaz, the total optical depth integrated through the cloud. Often the
cloud is so rarefied and transparent that 7,,,, < 1 at all frequencies.
Then (1.14.3) may be approximated

1(0,9) ~ i—;secﬁ/p dr. (1.14.4)

The frequency dependence of the emergent spectrum is that of the
emissivity j,. Under these conditions LTE is usually inaccurate;
the emergent spectrum qualitatively resembles that of the opacity
Ky, although quantitative results require a calculation of the various
atomic and ionic processes. There is an emission line spectrum in
which the lines are extremely strong, carrying a significant fraction
of the total flux. Such spectra are observed from interstellar clouds,
winds flowing outward from stars, the debris of stellar explosions,
stellar coronae, laboratory gas discharge lamps, and in other circum-
stances in which [ p dr is very small. Because the emitting volume
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may be large, the total mass and radiated power need not be small,
despite the low density.

These classes of spectra are very different, and may often be
identified at a glance, even though they are not usually found in their
pure states. This is useful in attempting to construct a rough model
of a novel astronomical object, because the densities, dimensions,
and directions of energy flow are readily constrained. Images are not
available for many interesting astronomical objects, because of their
small angular sizes, so that the first step in understanding them
is the identification of their components and the construction of a
rough model of their geometry, their physical parameters, and of the
important physical processes.

1.15 Mass Loss

Spectroscopic observations show that many stars lose mass. Typ-
ically, the observations show emission lines whose Doppler widths
indicate the flow velocity. In most cases the line shape does not di-
rectly establish that the mass is flowing outward, only that the star
is surrounded by a dilute cloud of gas with the appropriate distri-
bution of velocities; it is usually not possible to determine from the
data which velocities are found at which points in space, but outflow
is often the only plausible interpretation. In some cases the outflow-
ing gas absorbs an observable amount of the stellar line radiation,
and the resulting complex (P Cygni) line profiles may be interpreted
unambiguously as mass outflow.

Some stars are observed in ordinary photographs (or infrared im-
ages) to be surrounded by luminous gas clouds they have expelled;
in some cases these clouds have visibly expanded since the first pho-
tographs were taken. Many different kinds of stars lose mass by a
variety of mechanisms and at widely varying rates. Fven the Sun
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loses mass at the very small rate of ~ 107 My /year in the Solar
wind, produced by the thermal expansion of its hot corona. All stars
with convective surface layers are expected to have coronae, whose
mass loss rates should be much greater in larger stars with lower
surface gravity.

It is known that some stars born with M substantially larger
than Mgy, have evolved into degenerate dwarves; this establishes
that, in some cases, a star may lose the greater part of its mass. In
this section I briefly and qualitatively discuss mass loss mechanisms
which may occur in luminous stars, where the mass loss rate is often
high. Most of these processes are not understood quantitatively.

In a very luminous star the radiation pressure approaches the
total pressure, and 8 — 0 (1.11.1). How closely a star approaches the
neutrally stable limit 8 = 0 depends on the detailed calculation of
its structure; we know (see 1.11.8) that very massive stars and giant
stars with dense degenerate cores have small 5. ;jFrom the equation
of hydrostatic equilibrium we have

_,BGM,O _dp,
r2  dr’

(1.15.1)

so that in this limit the gradient of the gas pressure becomes zero.
Essentially the entire weight of the matter is supported by the gradi-
ent of radiation pressure; in other words, the force of gravity and the
force of radiation pressure cancel. If 8 = 0 exactly, nothing is left to
resist the gradient of Py, and the stellar material will float off into
space. This argument suggests that very luminous stars are likely to
lose mass.

This conclusion is at least qualitatively correct, and may be
reached on simple energetic grounds by noting that as f — 0 we
have v — 4/3, and that if v = 4/3 the binding energy F = 0 (see
1.5). It is possible to show, by manipulation of the stellar structure
equations, that n = 3 polytropes (which stars approach as  — 0)
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with a constant § are neutrally stable against convection if v = 4/3
(also approached as f — 0); it is unsurprising that a star with zero
binding energy should be neutrally stable against the interchange of
its parts.

Should L exceed 4mcGM/k, the star becomes unstable against
convection, and if convection is efficient it carries the excess flux.
The radiative luminosity does not exceed 4mcGM/k and the gradi-
ent of radiation pressure does not exceed the force of gravity. In fact,
L > 4wrcGM/k in the envelopes of many cool giants and supergiants,
where k is large; these stars generally do not lose mass rapidly. Only
if convection is incapable of carrying the heat flux does excess radi-
ation pressure drive a mass eflux.

It is comparatively easy to disrupt a star with 8 < 1 if it can be
disturbed, but reliable calculation is difficult. Possible disturbances
include fluctuations and instability in the nuclear energy generation
rate (known to occur in supergiants with degenerate cores and double
burning shells), and the inefficient convection present in the outer
layers of cool giants and supergiants. Such stars may lose their entire
envelopes in response to modest disturbances (most notably in the
formation of planetary nebulae by supergiant stars), but it is also
necessary to consider less dramatic mass loss processes. These are
easier to observe (because they last longer) and to calculate.

The most important factor leading to steady mass loss is proba-
bly an increase in x in optically thin regions above the photosphere.
Because the density and optical depth are low, convection cannot
transport heat effectively, and probably does not take place. In-
stead, matter can actually be subject to a force of radiation pressure
exceeding that of gravity (a situation which would not occur in a
stellar interior in hydrostatic equilibrium). At least two kinds of
physical processes, changing ionization balance and grain formation,
may produce such an abrupt jump in k.

The temperature of a grey body (one whose opacity is indepen-
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dent of frequency) just outside a photosphere will be lower than that
of one just inside by a factor of about 2~ '/4 = 0.84; outside, the black
body radiation field only fills the 27 steradians of outward-directed
rays, while the 27 steradians of inward-directed rays have little in-
tensity. The opacity of stellar atmospheres is not accurately grey,
but this is still a reasonable estimate of the temperature drop. Such
a drop may be sufficient to shift substantially the ionization balance,
and therefore the opacity. In addition, the Rosseland mean opacity,
derived for stellar interiors (in which 7, R 1 at all frequencies) is in-
applicable in optically thin regions. In the opposite limit, 7, S 1at
all frequencies, the radiation force is proportional to f Ik, dv; the
arithmetic mean opacity exceeds the Rosseland mean. Strong atomic
or ionic lines may now make a large contribution to the force of radi-
ation pressure, and calculations show that in the upper atmospheres
of hot luminous stars the net acceleration may be upward.

A simple argument makes it possible to estimate the mass eflux.
Suppose the matter is accelerated by radiation pressure in a spectral
line of rest frequency v,. Radiation between v, and v,(1 — v/c) may
be absorbed or scattered by the outflowing wind; the total pressure
the radiation field can exert on the matter may be ~ H, v,v/c2.
Equate this to the momentum efflux rate per unit area rmv (where m
is the rate of mass loss per unit area) to obtain the total mass loss
rate M:

M = 47 R*m
~ 47R*H, v, /c? (1.15.2)
~ L/,

where we have approximated L = f H, dv ~ H, v,. This result is
an upper bound, because not all of the radiation at the frequencies of
the Doppler-shifted line will be absorbed or scattered, and because
gravity has been neglected. M is independent of v; calculations
usually show that v is a few times the stellar surface escape velocity.
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If N strong lines contribute to the absorption of radiation, then M
may be larger by a factor N, which may be > 1, but not by orders
of magnitude.

The mass efflux rate (1.15.2) is small, although readily observ-
able spectroscopically. It is roughly the same as the equivalent mass
carried off by the radiation field itself; we know that during a star’s
life thermonuclear reactions convert less than 1% of its mass to en-
ergy. If L ~ Lg then M N 1072 M /year.

A luminous star with a very cool surface (a red supergiant) may
lose mass in a related, but more effective way. Above its photosphere
the temperature may be cool enough for carbon (and other elements
or molecules) to condense into grains; this is probably the origin of
interstellar grains. These grains (in particular, those of carbon) are
very effective absorbers of visible and near-infrared radiation across
the entire spectrum (x ~ 10° cm?/gm), so that the pressure of the
radiation on the matter may be ~ f H,, dv/c; the Doppler shift factor
v/c < 1 does not enter. Then we obtain

M~ (1.15.3)
ve

For a red supergiant v ~ \/CW/R ~ 30 km/sec, so this result is
~ 10* times as large as (1.15.2). The time required to halve M may
be as short as ~ 30,000 years. Such a large mass loss rate may change
the evolutionary history of the star; for example, it may reduce M
below M¢p. Unfortunately, it has not been possible to quantitatively
calculate mass loss by this process, although observations indicate it
does take place.

The highest estimate of mass loss comes if the energy of the
star’s radiation may be efficiently used to overcome the gravitational
binding energy and to provide kinetic energy, so that

L

M~ =. (1.15.4)
v
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In order for this to occur the radiation must be trapped between
an expanding optically thick outflow and the luminous stellar core,
and be the working fluid in a heat engine. The required optical
depth at all frequencies is 7 R c/v > 1; the acceleration occurs in
the stellar interior rather than in the atmosphere. However, such a
radiatively accelerated optically thick shell will probably be unstable
to convection if it is in hydrostatic equilibrium. Mass loss rates as
high as (1.15.4) may be obtained when hydrostatic equilibrium does
not apply; for example if L rises significantly above Lg in a time
< tp. Such an event resembles an explosion rather than steady mass
loss.

Rapid astronomical processes are hard to observe directly, be-
cause the fraction of objects undergoing then at any time is inversely
proportional to their duration. There is much less direct evidence
for mass loss at the rates of (1.15.3) or (1.15.4) than at the slow rate
(1.15.2), but the more rapid processes may be important in many
objects; the formation of planetary nebulae is a probable example.
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Chapter 2

Non-Equilibrium Thermodynamics

2.1 Kinetic Equations

A great many astrophysical problems involve distributions of par-
ticles which are not in thermodynamic equilibrium. In one sense
this statement is trivial and tautological—the entire universe would
be in equilibrium only if “heat death” had occurred. That clearly
is not the case, and the universe would not be very interesting if
it were, nor would we be around to care. More seriously, what is
meant is that the local distributions of particles are frequently not
close to equilibrium, and that the ways in which they approach equi-
librium are interesting. This is not often the case in everyday life,
where matter densities and collision rates are high, so that relaxation
to equilibrium is rapid and deviations from it are small (a striking
everyday exception is radiation; because the atmosphere is transpar-
ent, the sky is dark, and the Sun is bright, the visible radiation field
around us is very far from any equilibrium distribution). In con-
trast, many astrophysical problems involve very low densities and
low collisional relaxation rates, and deviations from equilibrium are
large, important, and interesting (stellar interiors are an exception).
Matter which is not in thermodynamic equilibrium is described by
kinetic equations; a standard textbook is that by Liboff (1969).

81
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In order to describe completely the state of a classical gas of
identical particles which are not in thermodynamic equilibrium it is
necessary to specify the coordinates and momenta of all its particles.
The probability that one particle will be found in a cell of volume
d3z, at position Z;, and in a momentum cell of volume d3p; at
momentum pi, that a second particle will be in a volume d3z5 at @,
and d3p, at Pa, ..., and so on, up to the N-th, is given by an N-
particle distribution function fy multiplied by the volume in phase
space:

—

fN(.’L‘l, ceey fN,ﬁl, “ee ,ﬁN, t) d3.’131 “ee dS.Tngpl “ee dgpN. (2.1.1)

Clearly fn is a horribly complex and unwieldy object, for N is typ-
ically of the order of Avogadro’s number.

If the motion of any one particle is completely independent of
any and all other particles, then instead of specifying fy it is suffi-
cient to specify a single particle distribution function f, where

f(Z,7,t) d*zd3p (2.1.2)

is the probability of finding a single particle in the phase space vol-
ume d3zd3p around the point in phase space (Z,7); equivalently,
f is the mean or expected density of particles there. The radical
approximation of using (2.1.2) instead of (2.1.1) is exact for nonin-
teracting particles and good for weakly interacting particles. It is
usually justified for dilute gases, but is quite wrong for liquids and
solids.

The single particle distribution function (2.1.2) is simple enough
to be tractable. If there are no interactions between the particles and
they are nonrelativistic it obeys the Liouville equation

af _of p Of of _

dt 0t m 0OF 0, (2-1.3)
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where F is any force field which may be present, and the arguments
(Z,p,t) of f have not been written for the sake of brevity. This
equation is only the statement that because particles are conserved
so is the particle density in phase space.

There are two ways in which (2.1.3) must be modified to in-
clude interactions between particles, because these interactions may
be divided into two kinds. The first kind is the interaction of a sin-
gle particle with the mean distribution of the other particles. If we
assume that the mean distribution is completely specified by (2.1.2)
then its effect on f may be included by adding a force field which
depends on f, so that (2.1.3) now takes the form

da _of P Of =z of _

G =t o T @A) o

dd ot m 07 0 (2.14)

This is known as the Vlasov equation, and is widely used in both
plasma physics and stellar dynamics. F' now includes the electric,
magnetic and gravitational fields produced by the mean distribution
of particles f, and is calculated from additional equations (Newton’s
or Maxwell’s).

The second kind of interparticle interaction has a random and
statistical character, and so cannot be described by a mean force
field F. Instead, it is assumed to take the form of instantaneous col-
lisions between two particles, independent of any other particles in
the fluid. This assumption is again exact in the trivial case of non-
interacting particles, and is a good approximation for dilute gases
with short range forces. It is generally a reasonable approximation
in plasmas where the interaction is long range but screened at long
distances; this screening, properly a three-particle interaction, is rea-
sonably accounted for by modifying the interparticle force law. The
assumption of instantaneous binary collisions is also believed to be
a good approximation for systems of gravitating particles if a large
number of particles are present.
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Collisions remove particles from a cell in phase space (or supply
them to it), so in (2.1.3) and (2.1.4) they take the form of a source
or sink term in place of the zero on the right hand side. We first
calculate the rate at which collisions scatter particles out of the phase
space volume d3zd3p about the point (T, 7).

Consider a collision between particles with momenta p and p7,
producing particles with momenta p” and 7]. Ignore quantum statis-
tics, so that the particles are distinguishable, though of the same
kind. In order to have a collision with impact parameter between s
and ds in a time dt the colliding particle must be found in a cylin-
drical volume element 2wsdsdt|p’— py1|/m; before collision the first
particle is on the axis of this cylinder, which is oriented along the
relative velocity vector (p — p1)/m. The rate at which collisions re-
move particles of momentum g is then

— —

pP—m
m

/ fo(&, 7,5, 1) dpy 2ms dis

: (2.1.5)

where fo(Z, Z,p,p1) is the two particle distribution function, giving
the probability that there are two particles simultaneously present
in a unit volume of phase space at coordinate ¥ and at momenta p’
and pj.

In order to make any progress with (2.1.5) it is necessary to
have (or at least assume) some information about fs. It is possible
to write an equation like (2.1.3) for fo, and then to add a collision
term to its right hand side. This would be useless, because the
collision term would involve the rate at which collisions with a third
particle change f5; the rate of such triple collisions depends on f3. An
infinite hierarchy of equations would result, unless drastic action were
taken. This resembles the closure problem of the moment equations
of radiative transport theory (1.7), but is much worse, because of
the increasing complexity of successive f,,.
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Boltzmann took drastic action. He approximated
f2(&, %, 9, p1) = f(Z,0)f(Z,51). (2.1.6)

This is known as the “assumption of molecular chaos,” and is jus-
tified in the dilute gas approximation we have been using all along.
It says that there is no correlation between the momentum distri-
butions of two colliding particles. It is not possible to justify this
rigorously, but it is believed to hold in a dilute fluid because between
scatterings a particle travels many times the mean nearest neigh-
bor distance. The scattering particle (incident with momentum p7)
almost certainly has scattered from many other particles and has
thoroughly randomized its velocity since the previous time (if ever)
it scattered from the particle of momentum p whose distribution we
are calculating. The scattering particle may therefore be considered
to have been drawn randomly from the particle distribution function
f, so that its momentum is uncorrelated with that of the test particle
from which it scatters. In contrast, in a liquid where two particles
may find themselves encaged by their neighbors and repeatedly scat-
tering from each other, and the assumption of molecular chaos would
not be justified.

The total rate of removal of particles from the phase space cell
d3zd3p is

— —

b—m

/f(a‘:’,ﬁ) d3p, 27s ds

(2.1.7)

;From this we must subtract the rate of the inverse process of scat-
tering from momenta p’, p] to P, p1, which is clearly

P — P

—=|. (2.1.8)

/f(f,ﬁ’)f(f,ﬁ{) 2ms’ ds'

(2.1.8) is the rate of removal from the phase space cell d3z'd®p’. For
a nonrelativistic elastic collision |p'— p1| = [p” — pi|, sds = §' ds/,



86 Non-Equilibrium Thermodynamics

d3p, = d3p}, d®p = d3p’, and d3z = d3z’. Then (2.1.7) and (2.1.8)
may be combined and added to (2.1.3), dropping the explicit Z de-
pendence, to give the Boltzmann equation

df _of P Of = Of

a = o T oz T oy (2.1.9)
o 1
_ / p, ‘p L 22 A9 (£ ) ~ ) (5)),

where p] and p’ are implicitly functions of 77, f, and the scattering
angle Q (determined by the conservation of momentum and energy),
and do = 2wsds. As before, in most terms the arguments of f are
not written explicitly unless they differ from (#,7,t). There is an
implicit relation between s and €2, which may be calculated from the
force law between the particles; the differential cross-section do /dS2
may be obtained from this relation. Because we have ignored quan-
tum mechanics, scattering is deterministic; (2.1.9) is also correct for
quantum mechanical do/dS2, but our elementary derivation involving
impact parameters is inapplicable.

The Boltzmann equation (2.1.9) is a nonlinear integrodifferential
equation, and is therefore rather difficult to solve. It is harder to
solve than the equation of radiation transport for scattering opacity,
because the scattering of radiation by matter is linear in the radiation
field (see 1.7.14), while the right hand side of (2.1.9) is nonlinear in
f- The difficulty lies partly in the nonlinearity and partly in the
fact that df (p)/dt is related to an integral of f(p7) over all values
of p1; equivalently, one may say that the scattering is nonlocal in
momentum space. If f is known a brute-force numerical evaluation
of the right hand side is not difficult, but this is usually not very
illuminating.

Certain special cases may be solved explicitly, at least to a useful
approximation. In one such case f is everywhere nearly Maxwellian,
but the mean fluid parameters of density, velocity, and tempera-
ture are slowly varying functions of space. Then an expansion (by



Kinetic Equations 87

Chapman and Enskog; see Chapman and Cowling 1960) of f about
a Maxwellian leads to a linear integral equation which is easier to
solve, and eventually to the calculation of the macroscopic transport
coefficients. For a gas containing only one species of uncharged par-
ticle these are the thermal conductivity and the viscosity. If more
than one species is present there are also diffusion coefficients and ad-
ditional coefficients (thermal diffusion, diffusion thermo-effect, and
cross-diffusion) coupling the fluxes of the several scalar quantities
(heat and the concentrations of the species). If the particles are
charged these are also coupled to the flow of current and the electro-
static potential by the thermoelectric effect.

This procedure is a remarkable accomplishment of formal
nonequilibrium statistical mechanics, but it is often inadequate for
the astrophysicist. In many astrophysical problems the dimensions
are so large and gradients of temperature, velocity, and composition
are so small that the flow of heat, momentum, and material by these
processes is insignificant. Notable exceptions include heat conduction
in white dwarfs and neutron stars and diffusion in some stellar photo-
spheres. In many other problems the transport of heat, momentum,
and matter are important, but the density is usually so low and the
mean free paths to collisions so long that the distribution functions
are very far from Maxwellian, and the Chapman-Enskog procedure
(and the textbook values of transport coefficients) are inapplicable.
One example of this is heat conduction in the Solar wind, in which
electron mean free paths may be longer than the size of the solar
system. Processes other than two body collisions, such as the exci-
tation of plasma waves, then become dominant in determining the
actual flow of heat. Another example is fluid turbulence. Locally the
particle distribution functions are nearly Maxwellian, but on larger
spatial scales the fluid velocity, temperature, (and sometimes com-
position) vary irregularly in both space and time. The result is a

turbulent flow which transports heat, momentum, (and sometimes
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composition) many orders of magnitude faster than the microscopic
transport processes. Unfortunately, no quantitative understanding
of these turbulent transport processes exists. Semi-empirical models
(such as “mixing-length theory” 1.8) work in the laboratory and are
very useful in engineering, where they can be tested and calibrated
by experiment. Their extrapolation to flows on astrophysical scales,
though widely assumed, is a matter of guesswork.

A second special case of the Boltzmann equation is very useful
in astrophysics. This is the limit in which p” is close to p, and
Py is close to pi; collisions individually produce small momentum
transfers. If the potential between particles is o< 1/r, as is the case
for electrostatic and gravitational interactions, then the integral in
(2.1.9) is dominated by distant collisions which individually produce
small momentum transfers. It is then possible to expand the right
hand side of (2.1.9) in powers of Ap’' = p’ — p, and to carry out
the integral. The result involves derivatives of f which enter from
the Taylor series expansion of f about f(p'), multiplied by algebraic
functions of p' and f. The resulting differential equation is much
easier to deal with. The calculation of charged particle equilibration
in 2.2 and the derivation of the Kompaneets equation in 2.3 are
examples of this kind of procedure. The result of an expansion of
(2.1.9) in powers of small momentum transfers, including only first
and second derivatives, is of the form:

df _of § Of = Of

g_99 2 9, g 9
it ot Tm 9z ' op (2.1.10)
a e d 1 82 =d ) )
=9 (a(p)f) +§8ﬁ8ﬁ' (b(p)f),

where the double dot product is between a tensor and a tensor op-
erator. It is necessary to include second derivatives in the expansion
of f, but generally not higher derivatives.

Equation (2.1.10) is purely formal; all the physics is contained
in the coefficients @(p’) and b(p), and their calculation is usually
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quite difficult (the derivation of the Kompaneets equation is one of
the easier examples). In general, they will depend on f. Equations
of the form of (2.1.10) are known as Fokker-Planck equations. They
are powerful tools in the study of nonequilibrium distribution func-
tions, and are generally valid whenever the evolution of a particle’s
momentum (or other conserved dynamical parameters) is the result
of many small independent random events.

The significance of the coefficients @ and b is apparent. Consider
only the @ term for a spatially homogeneous f with no external force.

Th
en of o

o " op

This is the equation of conservation of particles, if @ is their “velocity”

-(@f) = 0. (2.1.11)

in momentum space (the rate at which their momentum is changing,
or the mean force on them resulting from collisions). Therefore, @
is generally called the coefficient of dynamical friction. It is usually
directed opposite to p, as a particle loses its initial momentum in
randomizing collisions.

If we consider only the b term in (2.1.10), again for a spatially
homogeneous f with no external force, and also take b to be a scalar
constant b times the unit tensor, we obtain

of 1,9
Fri Ebvpf, (2.1.12)
where Vf, is the Laplacian with respect to the momentum coordi-
nates. We see that b represents a diffusion coefficient in momentum
space, as a particle suffers a random series of impulses. If f(p') is
very narrowly peaked, then its second derivatives are much larger
than its first derivatives, and the peak spreads out in a Gaussian
shape according to (2.1.12). As the peak broadens the d@ term be-
comes significant, and begins to counteract the broadening.
If f is evolving by collisions with a background equilibrium
distribution of particles at temperature T, then a stationary solu-
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tion to (2.1.10) must be proportional to a Maxwellian distribution
fo = exp(—p?/2mkpT) at that temperature. The coefficients @ and
b must satisfy

0 1 02

= o WO 5 gy

: (bfo)- (2.1.13)
If the background distribution function is not Maxwellian, then no
general constraint on @ and b is possible, because its deviation from
thermodynamic equilibrium may maintain a stationary but nonequi-

librium (and a priori unknown) form for f.

2.2 Charged Particle Equilibration

In this section I present explicit results for some processes of as-
trophysical interest by which nonequilibrium distribution functions
relax to their equilibrium form, or by which individual test particles
lose their initial momentum and energy, and come to be described
by an equilibrium probabilistic distribution function. The complete
calculations are generally rather lengthy, and numerous cases must
be considered, so that I present abbreviated accounts of the deriva-
tions and summaries of the salient results. Rosenbluth, et al. (1957)
present a particularly clear derivation of the theory of the Fokker-
Planck coefficients for Coulomb (or gravitating) gases, Trubnikov
(1965) contains a detailed discussion of this problem, and Spitzer
(1962) provides a convenient summary of the explicit results required
in many practical applications.
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2.2.1 Dynamical Friction The simplest problem to consider is that

of a nonrelativistic fast charged test particle slowing down as it moves
through a background equilibrium plasma. The results calculated for
this problem may be applied to gravitating neutral particles if the
electrostatic potential Z; Z,e? /r is replaced by the gravitational po-
tential Gmqmg/r. This process is called Coulomb drag in a plasma,
and dynamical friction in gravitating systems.

Consider a test particle with mass my, charge Z;e, and velocity
¥ = vZ moving through a plasma consisting of randomly distributed
“field” particles of mass mgy, charge Zse, and mean number density
ng. All plasmas must contain more than one species of particle in
order to maintain charge-neutrality, but the effects of the several
species are almost exactly additive, so it is only necessary to calculate
the effects of one species. The calculations are much simplified if the
thermal velocities ¥/ of the plasma particles may be neglected. This
is a good approximation if their thermal energies are much less than
the test particle kinetic energy.

The differential cross-section for classical Coulomb scattering
(Eisberg 1961) is

do Z2732et

30" It [sin(6/2)]7*, (2.2.1)

where m1s = mima/(m1 +ms) is the reduced mass, 6 is the scatter-
ing angle in the center of mass frame, and u = ||, where 4 = ¢ — v’
is the relative velocity of the test particle with respect to the field
particle from which it scatters. If @ suffers a change A in a collision
then the change in ¥ is

ma

AT = AT; (2.2.2)

m1+m2

the remaining fraction my/(my+ms) of A appears as recoil velocity
of the field particle.
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Because the scattering is elastic u« does not change as the result of
a collision, but @ is rotated by the scattering angle 6. If the scattering
plane makes an angle ¢ to the z-y plane, then the components of Au
are readily found from trigonometry to be

Auy = —u(l — cosf) = —2usin®(0/2)
Au,y = usinf cos ¢ = 2usin(6/2) cos(6/2) cos ¢ (2.2.3)
Au, = usinfsin ¢ = 2usin(f/2) cos(0/2) sin ¢

To compute the mean rate of change of velocity of the test par-
ticle, integrate over all scattering angles

dg? - / do Z—g nov AG(Q). (2.2.4)
The factor nyv is the rate at which the test particle encounters field
particles, and is required by the normalization of do/d2 to a single
scatterer. It is evident that Av, and Awv, average to zero when the
integral over ¢ is performed, because the impulse perpendicular to
the path of the incident test particle is equally likely to be in the +g
direction as —f, and in the 42 direction as —2. Then

d(i) _ _ wZiZ3e'n, /’f sinf df
0

_ S0/ (2.2.5)

dt m1m12v2

The indefinite integral of the integrand in (2.2.5) is 41nsin(6/2),

so that the definite integral diverges logarithmically at its lower limit.

It is necessary to introduce a cutoff on the range of integration. The

potential surrounding a static test charge ¢ in a thermal equilibrium

plasma is not the bare potential ¢/r, but is found (by combining Pois-

son’s equation and the thermal equilibrium distribution of charges
in a potential) to be

o(r) = %exp(—r/)\p), (2.2.6)
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where the Debye length

| kBT
AD = | ————- 2.2.
v w7, nig; (2:2.7)

The sum runs over all the species making up the plasma (this sum
is the reason the effects of the various plasma species in slowing the
test particle are not strictly additive). It is therefore sensible to cut
off the divergent integration in (2.2.5) by making the lower bound
of the integral the angle 6,,;,, at which the impact parameter of
the collision equals Ap. From an elementary impulse-approximation
analysis this angle is found to be
271 Z5€?

Opmin, = ————. 2.2.8
¢ m12U2AD ( )

Equation (2.2.5) then becomes

d(v) _§j47rZ%Z2264n2 In A

= 2.2.9
dt m1m12v2 ( )
where A is the argument of the “Coulomb logarithm?”:
A = T2VAD (2.2.10)
T Zae? o

The potential (2.2.6) is not strictly applicable to a moving
charge, and a proper treatment requires consideration of the dy-
namic, rather than static, shielding properties of the plasma (Mont-
gomery and Tidman 1964). The use of an abrupt cutoff is also not
strictly correct; in principle do/d) could be calculated for the dy-
namically shielded potential. If either test or field particles are elec-
trons then the cross-section should be calculated quantum mechani-
cally (Spitzer 1962). Fortunately, a logarithm is very forgiving of such
corrections, so long as its argument A > 1. In practice it is rarely
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necessary to be scrupulously careful in evaluating A. Values of In A
typically are in the range 20 — 30 in interstellar plasmas, are ~ 10 in
hot accretion flows and stellar winds, but may be < 1 in stellar in-
teriors. Our derivation has implicitly assumed A > 1, and becomes
inapplicable when this condition is not met. When it is applicable,
neglected effects introduce fractional inaccuracies O(1/InA); these
are referred to as non-dominant terms.

The logarithmic divergence of the integral in (2.2.5) means that
each decade (or octave) of scattering angle 6 between 6,,,;,, and 7 con-
tributes equally to the slowing down of the test particle. Over nearly
all of this range # < 1, so that most (all but a fraction ~ 1/InA) of
the slowing down is a consequence of small angle collisions. Much of it
is also a consequence of collisions with impact parameters b R Ny 173,
Because in such a collision the acceleration of the test particle ex-
tends over a time ~ b/u and distance ~ b, many such wide collisions
take place simultaneously. As long as they cumulatively produce lit-
tle change in %, they may still be regarded as independent additive
events, each described by the differential cross-section (2.2.1).

If we ignore the dependence of In A on u (which is weak because
it is logarithmic), then (2.2.9) is readily integrated to give the time
ts and length /5 required for the test particle to stop:

3
T11M120
ls = 2.2.11
* o 12nZ2Z2e nyIn A ( )
4
mimiav
Ly = . 2.2.12
* T 16wZ2Z2%etnyIn A ( )

Numerical evaluation for a fast electron of energy F interacting with
a hydrogen plasma, taking A = 10, yields

2
nols & 2.0 x 107 <%) cm™2, (2.2.13)
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For a fast proton

2
noly ~ 2.0 x 10%° (1 ;/fev) cm ™2, (2.2.14)
The rapid increase of stopping length with v and E is apparent. The
stopping length is greater for an electron than for a proton of the
same energy, but greater for a proton than for an electron of the
same velocity, in each case by a factor ~ my,/me ~ 103.

These results are inapplicable if the test particle is relativistic.
Then /¢, is roughly proportional to energy for electrons. Energetic
nucleons and nuclei lose their energy in violent nuclear collisions,
whose cross-sections are roughly independent of energy, and which
for protons exceed Coulomb slowing in importance for £ R 100 MeV.

Because the test particle is deflected as well as slowed in colli-
sions, the stopping length /; is measured along its actual path. It
may be seen by considering its deflections (2.2.2) that in most cases
the path is approximately straight, at least until nearly all its energy
has been lost, so that ¢, is a good approximation to the depth of pen-
etration into the stopping material. The most important exceptions
to this are fast electrons in a medium with Z5 > 1, which randomize
their directions before they lose much of their energy.

The slowing and energy loss of fast particles is predominantly
the effect of field electrons. In a collision of given impact parameter
a field ion (of Zy = 1) and electron will receive essentially the same
impulse Ap, but the acquired kinetic energy Ap?/(2ms) is much
greater for the field electron. The passage of fast particles through
cold matter predominantly heats the electrons. This effect is much
reduced if the electron thermal velocity becomes comparable to the
test particle speed (in which case it is no longer “fast”). The deflec-
tion of the test particles results, in comparable amounts (if Z = 1),
from the influence of field ions and field electrons; unless Z5 > 1
deflection is usually unimportant.
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A result very similar to (2.2.9) applies to the passage of fast
particles through neutral matter. The lower cutoff on the integral
in (2.2.5) must now be taken at collisions which impart enough en-
ergy to a bound electron to ionize it. For impacts significantly more
violent than these the electronic binding is negligible and (2.2.1) is
approximately correct. More distant encounters are ineffective, so
that the appropriate value of InA is less than it would be in an
ionized medium.

The rare collisions with # ~ 1 are not completely insignificant;
they contribute a fraction O(1/In A) of the total slowing. Because a
fast particle undergoes only a few such collisions in the course of its
slowing, their contribution is not accurately described by an integral
over the differential cross-section, but varies from particle to particle.
As a result the actual range of a particle may differ slightly from its
mean value (2.2.12); this phenomenon is called straggling.

In cold dense matter evaluation of (2.2.10) for thermal particles
(%mlfu2 ~ %kBT) implies In A < 1. This occurs in the interiors of low
mass stars; at the Solar center In A = 2. When In A is this small the
theory is inapplicable. The plasma is “strongly coupled,” meaning
that the Coulomb energies of nearest neighbors are comparable to
(or exceed) kpT. The ions and electrons do not move freely, and the
plasma is better described as a liquid than a gas. Stopping lengths of
thermal particles are smaller than the mean interparticle separation
~ Ny 1/ 3, and the theory of this section is inapplicable.

If this theory is to be applied to gravitating systems Ap must
be redefined. The phenomenon of Debye shielding does not exist be-
cause the particles cannot be in thermodynamic equilibrium (in equi-
librium the most probably state would have particles with zero sepa-
ration and infinite binding energy). If the substitution ¢? — Gm? is
made in (2.2.7), and the thermal velocity of the particles \/kpT/m
is taken to be the sound speed, then Ap becomes the Jeans length
Ay (see 3.2). We know that no stable self-gravitating configuration
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can exceed Ay in size. A gas of point masses cannot be confined
by external pressure, and will necessarily have a size close to Ay. It
is therefore customary and plausible to take the lower cutoff on the
angular integration (2.2.5) in a gravitating system to be at angles for
which the impact parameter is the size of the system; there are few
field particles at greater distances.

A particularly simple result is obtained for gravitating systems
in the limit mg < m;. Substitution into (2.2.9) gives

d{v') ATG?*maipln A
— = —7I
dt v2

, (2.2.15)

where the mean background density p = ngms. This should be
compared to the result (3.5.10) for the rate at which a mass mov-
ing through a fluid medium accretes additional mass, a process
which also slows it. The slowing by dynamical friction, calculated
in (2.2.15), exceeds the accretional slowing by a factor InA; this
calculation of dynamical friction is applicable to supersonic motion
through collisional fluids as well as to free particles. In a colli-
sional fluid accretion occurs only from orbits whose deflection exceeds
2sin™1(1/4/5) ~ 53°, which represent only ~ 1/In A of the integral
in (2.2.5). The rate of slowing by dynamical friction is proportional
to the test particle mass (the drag force and the accretion rate are
proportional to its square), so that dynamical friction may be impor-
tant for massive bodies, such as large molecular clouds, star clusters,
and galaxies, even when it is insignificant for individual stars.

2.2.2 Equipartition Times There is another limit, complementary

to that of a fast test particle moving through a cold plasma, in which
it is easy to analyse the effects of Coulomb collisions on the velocity
distribution function of test particles. Consider test particles of mass
my and charge Z;e which are initially at rest (¢ = 0) in a plasma of



98 Non-Equilibrium Thermodynamics

particles of mass mq, charge Zse, and number density no, in thermal
equilibrium at temperature T5. As in 2.2.1, the effects of several
species are simply additive (except that they all contribute to the
Debye length), so we consider only one.
Because initially ¥ = 0 and an equilibrium plasma is isotropic,
there is no preferred direction, and we must have
d{7)
dt
However, Coulomb collisions do impart velocity to the test particle,

= 0. (2.2.16)

so we can calculate the increase in its velocity dispersion (v2). As
long as the test particle may be considered to be nearly at rest the
rate of increase of (v?) is independent of the direction of the colliding
field particle (again, because there is no preferred direction). For
algebraic simplicity take the field particles to be travelling in the —2
direction, so the results (2.2.3), together with (2.2.2), may be used to
calculate the change of (v?). Note that (2.2.3) would give erroneous
results for each of (v), (v2), and (v7), but it gives the correct average
(and sum (v?)), because taking this average is equivalent to averaging
over all possible directions of impact of the field particles.
The rate of change of the velocity dispersion is then given by

d(v?) _ ( ms )2 / 40 Poy 9 F o)A (Q,00)], (2.2.17)

dt mi + mo dQQ
where the equilibrium distribution function is
mo 3/2 m2’02
2
— — 2.2.18

and from (2.2.3) we find Au? = 4u?sin?(9/2). Substituting (2.2.1),
Au?, and f(v9) into (2.2.17) gives

d(v®) Mo 2 my  \*/? 8m2nq Z2Z2e
dt B mi + mo 27I'kBT2 m%2

></ sinf df /dv oo o <_mgv§)
sin?(0/2) ) 2 2P\ Takpmy )




Charged Particle Equilibration 99

The integral over 6 is exactly the same integral evaluated in (2.2.5),
and gives 4ln A. Now A is defined for an encounter with the mean
thermal energy %kBT (where T is an average of the test particle
temperature, here taken to be zero, and T3, weighted according to
the reciprocals of m; and mgy in order to give the mean kinetic energy

of relative motion):
_ 3ksTAp

A= ——-.
21Z262

Properly A varies with vg, but this gives an insignificant correction

(2.2.20)

(smaller than other neglected effects mentioned in 2.2.1) to the final
result. We now have

d(v?) Mo 2 my  \*/? 32m2ne 22 Z2e* In A
dt — \mqi +mo 2rkpTy 3

miy
e’} 2
m2'U2
X d — .
/0 Vg Vg €XP ( 2kBT2)
(2.2.21)

This integral over velocity is elementary. Performing it, and collect-

ing factors gives

d(v?) _ 16mneZ2Z2e* In A ma (2.2.22)
dt m2 onkpTy -

We now define an equipartition time ¢., as the characteristic

time for the mean kinetic energy to relax to the value %k BT it has
if the test particles are in equilibrium with the field particles:
. 3ksT»
eq d
s (07)
. 3m1 (kBT2)3/2
- 8y2mmana Z2Z3et In A

(2.2.23)

The 3/2 power of T appearing in this equation resembles the v3
dependence in (2.2.11), and has a similar origin in the velocity de-
pendence of the cross-sections.
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These results are applicable only in the limit in which the
test particles move slowly compared to the field particles; unless
mi1 > mgy this approximation will break down before equipartition
is achieved. In the more general case in which the test particles are
neither very fast (2.2.1) nor very slow (2.2.2) compared to the field
particles, the kinematics of the collisions becomes more complex.
Spitzer (1962) gives the result

(2.2.24)

3 kT, kpTy\ >/
teq mims (Bl+ B2>

 8V2mnyZ2Z2¢4InA \ m1 ma

for the equipartition time between a distribution of test particles
which have an equilibrium distribution with temperature T} and field
particles at temperature T». Equation (2.2.23) describes the case
Ty = 0. The result (2.2.24) may also be applied to the relaxation
towards equilibrium of a distribution of particles with itself.

The parentheses in (2.2.24) correspond to the v3 or T3/2 de-
pendence of (2.2.11) or (2.2.23), but indicate that the larger of
the two thermal velocities is to be used. A very fast ion pass-
ing through a cool plasma principally gives up its energy to the
plasma electrons, until it slows below the electron thermal velocity.
If v < (kBT /me)Y%(me/my)Y? = (kpT/my)Y/?(my/me)'/¢ (which
may still correspond to kinetic energies far exceeding kpT5), the test
particle predominantly heats the plasma ions, because of the effect
of a small my = m, in the denominator of (2.2.24) when applied to
its interaction with the plasma electrons.

2.3 Comptonization

Comptonization is the name given to the process by which electron
scattering brings a photon gas to equilibrium. Because photons have
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a negligible cross-section for scattering by other photons (although
for photons with frequencies v, and vy satisfying h2v vy > m§c4
photon-photon pair production and subsequent annihilation have the
effect of photon-photon scattering), they can only come to equilib-
rium by interaction with matter. In the laboratory the walls of an
enclosure are available to absorb and re-emit the radiation, but in
most astrophysical problems there are no walls and absorptive pro-
cesses in the matter are often very slow. In hot fully ionized mat-
ter, the most frequent and important process is Compton scattering.
In the limit that the electrons are infinitely massive (compared to
hv/c?) and slow-moving, Compton scattering would make the pho-
ton angular distribution isotropic, but would not affect the frequency
spectrum. Because electrons are of finite mass and do have random
thermal velocities, the photon spectrum may change as a result of
scattering, and net energy transfer between photons and electrons
may occur. The finite electron mass leads to an electron recoil as
a result of Compton scattering, and tends, on average, to transfer
energy from photons to electrons. The random electron velocities
produce random Doppler shifts of the scatterers in the laboratory
frame, which, on average, tend to increase the photon energy at the
expense of the electrons. The former effect increases with photon
frequency, and the latter with electron energy; if the photons have a
thermal equilibrium distribution at the same temperature as that of
the electrons, the two effects will balance.

The term Comptonization is used if the electrons are in thermal
equilibrium at temperature 7', and if both kgT and hr are much less
than m.c?, where v is the frequency of a typical photon. In this non-
relativistic limit a number of powerful approximations are possible,
and a differential equation of Fokker-Planck form for the time evolu-
tion of the photon occupation number n(v), assumed isotropic, is ob-
tained. This equation was first published by Kompaneets (1957), and
is generally referred to as the Kompaneets Equation. The fully rela-
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tivistic case is computationally much more complex, and cannot be
reduced to a Fokker-Planck equation because the photon frequency
shift Av upon scattering does not satisfy Av < v.

Comptonization is likely to be important when the temperature
is high and the density is low, so that matter is fully ionized, and
absorption processes (generally proportional to the square of the par-
ticle density) are less important than scattering (proportional to the
density). Comptonization occurs whenever photons and electrons in
the same volume are described by different temperatures. It is of par-
ticular interest when the temperature of a low density electron gas
much exceeds the temperature of a Planck function with the same
energy density, and the absorption optical depth is low enough that
the photon spectrum falls far below a Planck function at the elec-
tron temperature; typically some low energy (hv ~ kpT) photons are
present. Energy flows from the electrons to the photons. Three likely
astrophysical sites have been suggested: the early universe, accretion
flows onto compact objects (such as occur in compact X-ray sources),
and quasars. Comptonization has been used in theoretical modelling
of each of these (though synchrotron radiation by relativistic elec-
trons is probably more important for quasars). Comptonization will
also occur when cool electrons are found in a radiation field of high
energy (hv > kpT), in which case the net energy transfer is from
the photons to the matter.

Despite the wide use of Comptonization by theorists, no clear
observational evidence for it exists. There can be no doubt that the
process occurs, for it is derived from elementary relativistic kinetics,
but its actual importance in astronomical objects is unproven. It pro-
duces no unique spectral signature, so it may be important without
that fact being apparent. In some circumstances it may bound the
parameters of observable objects; if Compton scattering and energy
transfer are effective, the object may not be practicably observable
because they may drain energy from an observable form, such as
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electrons which may emit synchrotron radiation, to a less observable
form.

Kompaneets’ original paper and the book by Rybicki and Light-
man (1979) are rather terse, so I will try to explain the derivation
in more detail. The elementary scattering process begins with an
electron of momentum p and energy E, and a photon of frequency
v directed along the unit vector 7, and scatters these into p', E’,
V', and A/. Define the frequency shift A = v/ — v. Conservation of
energy and momentum state

—2 /2
P ;D
h '+ 2 2.3.1
v+ o, v + om. ( )
h ho!
Yarr="a 4. (2.3.2)
C C

Eliminate p” by regrouping and squaring (2.3.2) and substituting it
into (2.3.1). Collecting terms and ignoring the term in A? (valid in
the nonrelativistic limit) leads to a linear equation for A with the

solution
hvep - (i — ') + h2v2(1 — i - 1/)

hA =
mec +hv(l —a-n') —cp-n'

(2.3.3)

Kompaneets (1957) contains typographical errors in the correspond-
ing expression and elsewhere.

Now take hv ~ kT ~ O(mv?), where v is a characteristic elec-
tron thermal velocity. The second term in the numerator is an O(v/c)
correction to its first term, as is the third term in the denominator
to its first term. The second term in the denominator is an O(v?/c?)
correction to its first term. We also see that hA/mqc* ~ O(v?/c?).
Had we included the A? term in deriving (2.3.3), it would have led to
an O(v3/c®) fractional correction, by adding an additional hA/2 to
the denominator; equivalently, the ratio A/v which is O(v/c) would
have its value changed by an amount O(v*/c*). This is clearly neg-
ligible. As will be explained later, we only need consider the leading



104 Non-Equilibrium Thermodynamics

term in (2.3.3), which is

hup- (- @)

hA ~ (2.3.4)

MeC
Now we must write down the Boltzmann (kinetic) equation gov-

erning the evolution of the photon occupation number n(v). For an

infinite homogeneous volume (8/0#) = 0 and F = 0, so that

on(v)
ot

:/d3p cdo [n(v)(1+ n(v))N(E) — n(v') (1 + n(v)) N(E")].

(2.3.5)
N (E) is the electron distribution function per unit momentum space
and unit real space. Because the electrons are in thermal equilibrium
N (F) depends only on energy and not on direction. do = (do/d2)d2
is the infinitesimal element of cross-section for scattering a photon
into the element of solid angle d€2; in this scattering (v,p’) — (v, p").
do /dSY is the differential scattering cross-section. The first term in
the brackets represents the scattering of photons from frequency v to
frequency v/ by electrons of energy E. Because photons are bosons
the factor (1 + n(v')) represents the effect of stimulated scattering.
The electrons are assumed nondegenerate (N < 1), so the corre-
sponding fermion factor (1 — N(E')) is ignored. The second term
similarly represents scattering from v/ to v. The argument of N in
this term is E/ = E + hv — hv/ = E — hA because in this scatter-
ing the electron energy changes from E’ to E. This term represents
the process which is the exact inverse of that of the first term; it
proceeds at a different rate only because the occupation numbers
n(v) and N(E) are different from n(v’) and N(E'). The differential
cross-section do is the same, because if it were not an equilibrium
gas of photons and electrons could drive itself away from equilib-
rium, violating the second law of thermodynamics. For a given v
and 7n the electron momentum p and the scattering angle €2 together
determine v/ and 7/, so there is no additional integration over these
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variables. Such an integration could have been included, but then
the kinematic constraints (2.3.1) and (2.3.2) would have introduced
a Dirac-d function, which would have made the integrals trivial.

It is easy to see that if a general Bose distribution

1

nv) = exp(a+ hv/kpT) — 1

(2.3.6)

is substituted into (2.3.5) and N is taken to be Maxwellian at the
same temperature 7' then the right hand side of (2.3.5) vanishes, as
it must by the second law of thermodynamics. It is necessary to
introduce an arbitrary chemical potential —akgT into n(v) because
Comptonization conserves photons; equilibrium is achieved only sub-
ject to this constraint. The photon distribution cannot relax to the
Planck function (a = 0) by Compton scattering alone. The assump-
tion that the electrons are fully relaxed and nondegenerate is gener-
ally well justified when Comptonization is of interest.

Equation (2.3.5) is an integrodifferential equation for n(v),
which is hard to solve, except by “brute force” numerical techniques.
Such a solution gives little physical insight. The reason for this diffi-
culty is that as it is written (2.3.5) relates On(v)/0t to the values of
n at all other frequencies v/; it is nonlocal in frequency. In the non-
relativistic limit the only v/ which contribute are close to v, so the
right hand side of (2.3.5) may be expanded in powers of A/v < 1.
The integrals may then be performed explicitly, leaving a differential
equation which is easy to solve, and which is readily interpreted. It
must be remembered that the Kompaneets equation is based on an
expansion in powers of A/v, which is O(v/c). This is not a very
small ratio under conditions in which Comptonization is of interest;
for T = 108 °K it is about 0.2. Although the Kompaneets equation
is strictly correct in the nonrelativistic limit, it is not very accurate
under the conditions in which it is usually used.

It will be necessary to expand (2.3.5) to terms of the second
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power in A. Use the Taylor expansions

N BA n 1 RANTn
n(y)_n(y)+k3T8$+2 T a$2+ (2.3.7)

N(E — hA) = N(E) 1+E+1(M>2+--- . (2.3.8)

kT 2 \ kT

where a nonrelativistic Maxwellian N(F) has been assumed and
x = hv/kgT is a convenient scaled frequency variable. Substitute
these expressions into (2.3.5) and collect terms to obtain

on(v)  h <8—n—|—n+n2>11

ot kgT \ Ox
1/ h \?[0n on

- = Z 191 i E By P
+2<kBT> <8x2+ ( +n)8$+n+n) 2+,
(2.3.9q)

where

T, = / d*p do cN(E)A (2.3.9b)
I, = / d®p do cN(E)AZ. (2.3.9¢)

This has been written as a power series in A. The term in A° is
zero, as it must be, for if A = 0 no photon can change its frequency.
The crucial step in reducing the integrodifferential equation has been
the replacement of n(v') and N(E') by functions of n(v), N(E), and
their derivatives, which have been brought out of the integrals. The
only function of v/ left in the integrals is A, which has been simply
expressed in terms of other variables by (2.3.4).

Examination of (2.3.4) shows why it was necessary to include
the A2 term in (2.3.9). For any (7 — #'), and to lowest order in v/c,
T, is proportional to [ d®p - (A — #/)N(E), which is zero because
N(E) is independent of direction (it is sufficient that the mean elec-
tron momentum be zero). Thus, to lowest order in v/c, T; is zero.
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This must be so because this term would correspond to a systematic
Doppler shift of O(v/c) in each scattering, which cannot be present
for the assumed isotropic distribution of electrons. The nonzero con-
tribution from Z; depends on a better estimate of A than (2.3.4),
and is smaller by a factor O(v/c). Equation (2.3.3) could be used to
estimate A to higher order in v/c, but the integration of the result-
ing expression would be difficult. Fortunately (but not miraculously)
the integration of the A% term in (2.3.9) is tractable, and makes the
explicit integration of the A term unnecessary. In the A? term the
first approximation (2.3.4) to A is sufficient.
Substitute (2.3.4) into the integral Z (2.3.9¢) to obtain

T, = / d®p cdo N(E)A?

_ (m”ec>2/cda &@p N(E)(7- (h — "))

In the last integral write p'- (i — ') = p|i — 7’| cost), where 9 is
/|2

(2.3.10)

the included angle between these two vectors. The quantity |7 — i
depends on the scattering angle but not on p, and may be removed
from the integral over electron momentum space. Because the re-
maining factors in the integral are isotropic (N(FE) by assumption),
the angular part of the momentum space integral is just the angular
integral of cos? v, which is 47 /3 for any polar axis (the direction of
7 — 7n'). Performing the integral over the direction of the electron
momentum p gives

2
1
Ty =~ ( Y ) /cdam—ﬁ'|2/47rp2 dp N(E)p®.  (2.3.11)

mecC

The last integral in (2.3.11) is just n, times (p?), or 2m, times the
electron kinetic energy density. Because N(FE) is Maxwellian this is
3kgTmen.. Then

2
v do
T, = Tmene Q—|n — /| 2.3.12
2 <mec) kg mnc/d dQ'n | (2.3.12)
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The exact differential cross-section for Compton scattering is
given by the Klein-Nishina formula. Because we are taking the
nonrelativistic limit we approximate it by the Thomson differential
cross-section do/dQ = 1r2(1 4 (A - 7')?), where ro = €?/(mec?)
is the classical electron radius. This introduces a fractional error
O(hv/mec?) ~ O(w?/c?), which may be ignored because in gen-
eral we are only considering the leading terms in expansions whose
successive terms are in the ratio O(v/c). Similarly, we ignore the
Lorentz transformations between the laboratory and scattering elec-
tron’s frames in evaluating do/dQ and df2, because in the nonrel-
ativistic limit these frames become identical. A fully relativistic
treatment would include these transformations, and is cumbersome.
(2.3.12) becomes

2
1
T, = ( v ) kBTmenec/dQ§r§(1+ (A -7/)?) A —a'%. (2.3.13)
e
Substitute | —7/|2 = A2 +7'?2 —2(A-A') = 2—2(A-7’), and integrate
over the photon scattering angle df). Integrals over a sphere of odd
powers of 7 - 7/ = cosf are zero, while the integral of cos? 6 is 47 /3.
Finally, rewrite the result in terms of the angle-integrated Thomson

cross-section g,y = %m‘g to obtain
s\ 2
Iy=2 ( > kBT meneoescC. (2.3.14)
MeC

Substituting (2.3.14) into (2.3.9) shows that the integral of A?
contributes to On/dt a term proportional to z%(0?n/0z?), while the
integral of A does not. This result will permit the derivation of the
Kompaneets equation without any further computation of integrals.
The procedure is analogous to using (2.1.13) to determine the Fokker-
Planck coefficient @ from b.

Compton scattering conserves photons. Therefore the occupa-

tion number n(r) must satisfy a conservation law in three dimen-
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sional photon momentum space. For an isotropic photon distribu-
tion n depends only on the magnitude of the photon momentum, and
such a law takes the form

on 1 0(a%)
ot 2 Oz

(2.3.15)

where j is the “current density” of photons. Equation (2.3.9a) con-
tains a term equal to 9?n/0z? times a function of z (but not of n).
Because (2.3.15) describes the same function it must have the same
form, so that any term in j proportional to dn/dx cannot contain
any other dependence on n. Hence j must be of the form

j(n,z) = g(z) (a—” + h(n, a:)) , (2.3.16)

ox
where g and h are functions yet to be determined.

The Bose equilibrium distribution function (2.3.6) must give
zero when substituted into (2.3.9) (as it is a stationary solution of
2.3.5). Because there are no photon sources or sinks, j = 0 for a
stationary solution. For n of the form (2.3.6)

on 9

—=—-n— 2.3.17

5 = T ( )
holds identically. Therefore, the condition that j = 0 in equilibrium
is satisfied if for all n and =

h(n,z) = n + n?. (2.3.18)

To determine g compare the coefficient of 8%n/0z? in (2.3.15)

and (2.3.16) to that in (2.3.9). In (2.3.9) it is 2 times constants (the

z? comes from the 2 in 2.3.14), so that g(z) o< 2. The constant

factors are found from (2.3.9) and (2.3.14), so that
kgT 9
g9(z) = — e OesCT” (2.3.19)

e



110 Non-Equilibrium Thermodynamics

Combining (2.3.15), (2.3.16), (2.3.18), and (2.3.19), and defining a
dimensionless scaled variable y in place of ¢

kT
Y= t%neaesc (2.3.20)
MeC
gives the Kompaneets equation:

0 1 0 0
B_Z = S5r |:x4 (8—;" +n+n2>] : (2.3.21)

It is possible to determine 7; explicitly, now that (2.3.21) and
(2.3.14) are known, by comparing the coefficients of dn/0z. The
result is

kT

Ty = ——50esner(4 — 7). (2.3.22)
c

This result may also be obtained by comparing the coefficients of n
and n?; the answers are necessarily the same.

In most astrophysically interesting Comptonization problems
the photon density is far below its equilibrium value, so n < 1 and
the nonlinear term in (2.3.21) may be neglected. Then it is possible
to derive a simple result for the variation of the total photon energy
density with time, if nearly all the energy is at low frequencies z < 1.
This energy density is given by

2(ksT)* [ 2
& = W/o n(x)x drx dz. (2.3.23)
Then
h3c®  dE, 0 [™
8t(kpT)t dy 0y J,
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where the n? term in (2.3.21) has been neglected. Integrate by parts,
and assume that n(z) drops off sufficiently rapidly (it will usually
decline exponentially) as £ — oo, but does not rise too rapidly as
x — 0, so that x° (g—;" + n) — 0 in both these limits. Then

hec? d_gr__/oom4 LU
8t(kgT)* dy  Jo Ox

o0 o0
= —/ nxt dx —/ $48_n dx.
0 0 (9:1:

Again integrating by parts,

h3c¢®  dE 4, *
— " = — dr +4 3 da. 2.3.2
Se(hpT)E dy /0 nx® dx + /0 nx” dx (2.3.26)

(2.3.25)

If the photon energy density is concentrated at low frequencies z < 1,
the first integral in (2.3.26) is much less than the second. Neglect
the first integral to obtain the approximate result

dé&,
o= (2.3.27)
or
Er = Epexp(4y). (2.3.28)

The energy density grows exponentially (even though photon
number is conserved). The e-folding time is

t MeC? 1

toy (2.3.29)

- @  4kpT neoesc’
The characteristic time scale (2.3.20 and 2.3.29) is proportional to
(neoesc) ™1, a photon’s mean time between Compton scatterings, and
inversely proportional to kgT/m.c?, because the mean photon en-
ergy gain per scattering is O(kpT /mcc?) ~ O(v?/c?).

The exponential growth indicated by (2.3.28) does not continue
indefinitely. Eventually a significant fraction of the photon energy
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comes to be in photons for which = % 1. Then the negative term in
(2.3.26) is no longer insignificant, and the growth slows.

A realistic astronomical problem is unlikely to start at some ini-
tial time with a soft photon spectrum whose energy density then
grows exponentially according to (2.3.28). It is more plausible to
think of an object of finite size and finite optical depth with a steady
source of low frequency photons. As the photons increase their mean
energy according to (2.3.28) they also diffuse outward and escape. A
steady state is obtained if there is a steady heat source for the matter
to replenish the energy it gives up to the photons. It is straightfor-
ward to compute numerically the emergent spectrum. Qualitatively,
it depends on the ratio of the size of the Compton scattering cloud
to a critical size approximately equal to W(neaes)_l. For
significantly larger clouds the energy growth saturates, and the emer-
gent spectrum resembles a Wien law n(v) o exp(—hv/kpT) (the low
n or large a limit of the equilibrium Bose distribution 2.3.6). Smaller
clouds are inefficient energy multipliers, and produce nearly power
law spectra, steeply decreasing with increasing frequency. Because
the critical size depends on T, the emergent radiative power is a
steeply increasing function of 7', and wide variations in the photon
source or the power supplied to the matter are accommodated by
modest changes in the steady state temperature.

In some circumstances the effect of Comptonization on the elec-
trons is of more interest than its effect on the photons. This is a
much simpler problem; because we have assumed that the electron
distribution function quickly relaxes to a Maxwellian of temperature
T, we only need to know the mean rate of energy transfer, and not
the effect of Compton scattering as a function of electron momen-
tum. The complete answer in the limit n(r) < 1 is supplied by
(2.3.26), noting that each erg supplied to the photons is drawn from
the electron thermal energy.

The energy transfer may be calculated explicitly for special cases
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of n(v). For a general Bose distribution the integrals must be ex-
pressed as infinite series, and if @ < 1 the approximation n(v) < 1 is
not valid throughout the spectrum. In astrophysics one often deals
with diluted black body radiation fields, in which the spectral shape
resembles that of a black body but the energy density is much lower.
The dilution is generally the result of spherical divergence, and is
found in regions illuminated by a small distant source. Dilution re-
duces the energy density, but does not change n(v) for photon states
whose momenta are directed from the source; other states have n = 0,
giving an anisotropic n. It is easier and usually a good approxima-
tion to consider an isotropic Wien spectrum of arbitrary intensity
characterized by a temperature oT'; then n(v) = ngexp(—z/«a). In-
sertion of this into (2.3.26) (which implicitly assumes n < 1) leads

to the result e 8 £
e _© rOes
=g (a—1), (2.3.30)

e

where &, is the electron thermal energy density. For very soft photon
spectra (a < 1) the electrons cool at the rate

dfe 8 &rOes
dt 3% mec’

(2.3.31)

The result (2.3.31) may be obtained regardless of the shape of the
photon spectrum by considering the Thomson scattering drag force
on the thermal motion of the electrons, allowing for Doppler shifts
and aberration to first order in v/c; for hv < kT the increase in
electron velocity dispersion resulting from scattering recoil is negli-
gible. These results hold for any angular distribution of radiation,
provided the mean radiation pressure has been subtracted out and
the electron distribution remains isotropic.

An example of the application of (2.3.30) and (2.3.31) is to
the accretion of matter onto a white dwarf or a neutron star.
The stellar photosphere is a source of radiation with temperature
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T, ~ (L/4nr?ogp)'/*, where L is the luminosity and ogp is the
Stefan-Boltzmann constant; this may typically be ~ 3 x 10° °K for
a white dwarf and ~ 107 °K for a neutron star. If matter falling
freely from infinity is stopped in a shock at the stellar surface, its
temperature is of order T' ~ (GM pu/kpR), where p is the molecular
weight; this is ~ 10° °K for a white dwarf and could range as high
as ~ 10'2 °K for a neutron star (though a simple accretion shock
is not expected). Thus very hot matter is immersed in a radiation
field of much lower color temperature, and (2.2.31) may be used to
calculate the Compton cooling of the matter (provided the electron
temperature satisfies kpT < mec?).

(From (2.3.31) we see that if no heat sources are present the elec-
tron thermal energy decays exponentially on a characteristic Comp-

ton cooling time

3mec
toce = . 2.3.32
¢ 8Er0es ( )

If & = L/(4wr%c), corresponding to a soft photon luminosity L flow-

ing radially outward, then

Lg 3m. r3c

te—— REVE
e L 8my GM

(2.3.33)

where L has been expressed in terms of the Eddington luminosity
Lg (1.11.6) for pure hydrogen composition and myg is the mass of
a hydrogen atom. This cooling time should be compared to the
hydrodynamic time ¢, (1.6.1), which characterizes free fall or periods
of vibration. Their ratio is

tce Lg 3me [ rc?

= — ——. 2.3.34
th L 8mH GM ( )

It is evident that if L is large tc. < tp, so that Compton cool-
ing is very rapid. It may dominate the energy balance in accretion
flows onto compact objects, and therefore may determine material
temperatures and the spectrum of observable radiation.
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2.4 Evolution and Collapse of Star Clusters

There are two kinds of astronomical objects which have led to the
study of the evolution and collapse of clusters of stars. The first of
these is the globular clusters. These spectacularly beautiful objects
typically contain 10° stars in a region perhaps 10 parsecs across; the
central density of stars may be as much as 10° times higher than that
in the Solar neighborhood. Only a small fraction of these stars appear
in a photograph of a globular cluster, for they span a wide range of
brightness and most are too faint to detect. Frequently the inner
parts of a cluster resemble a single over-exposed blob of overlapping
stellar images. Despite this, even the densest inner regions are quite
empty; an observer at the center would see only ~ 107! of the sky
covered with stars. The escape velocity and random stellar velocity
of globular clusters are quite small and difficult to measure, even
though their central densities are high, because the total mass is
modest. Typical velocities are probably around 10 km/sec, which
should be contrasted to velocities of 250 km /sec in galaxies. Globular
clusters are dynamically fragile objects.

The stars in globular clusters in our Galaxy are among the old-
est known. (The Magellanic Clouds contain globular clusters, appar-
ently recently formed, in which the stars are young.) Astronomers
have been interested in globular clusters for nearly a century be-
cause they have been very useful in understanding stellar evolution
and the extragalactic distance scale, and because some have hoped
that they might illuminate the history of the early universe and the
formation of our Galaxy. Interest in globular clusters surged in 1975,
when it was discovered that they are about 100 times richer in com-
pact X-ray sources than our galaxy as a whole. It was then widely
speculated that globular clusters might contain 1% of their mass in a
massive central black hole. This hypothesis is now largely discounted
because the X-ray emission appears to be more characteristic of ac-
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creting neutron stars in binary systems (4.2; most globular cluster
X-ray sources show characteristic bursts; Lewin and Joss 1983), and
because the X-ray sources are not found in the exact cluster centers,
implying that they are not very massive (Grindlay, et al. 1984). The
overabundance of X-ray sources, and even their presence at all, are
still unexplained. This problem is part of the more general prob-
lem of binary stars in globular clusters, about which there are few
data, but which may be important for the dynamical evolution of
the clusters.

The second astronomical application of the theory of star clus-
ters is to elliptical galaxies, and possibly to quasars (4.7). Elliptical
galaxies typically contain 10! stars in a region 10* parsecs across.
The stars themselves resemble those in globular clusters but they are
distributed at a much lower density, and with much higher velocities
(typically 250 km/sec). The evolutionary and collapse phenomena
which are believed to be important for globular clusters are negligibly
slow for elliptical galaxies. Interest lies in the possibility that some
galaxies (either elliptical or spiral) contain much denser cores, in-
termediate in parameters between globular clusters and the galaxies
as a whole, in which these phenomena may be important. There is
evidence that some nearby galaxies (for example, Andromeda) have
such cores, for photographs underexposed in order to study their in-
ner regions show very compact nuclei with nearly star-like images
(see also Light, et al. 1974). I will call these “pseudo-stellar nuclei;”
the word “quasi-stellar” generally refers to quasars, which are very
different (though possibly related) objects.

The fundamental problem in the theory of star clusters (re-
viewed by Lightman and Shapiro 1978) is the inability of the individ-
ual stars, considered as particles constituting a gas, to come to full
thermodynamic equilibrium. Because the depth of the potential well
is finite, in any Maxwellian distribution of stellar velocities there will
always be a small fraction of the stars moving faster than the escape
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velocity. It is possible to estimate this fraction if one uses the virial
theorem to relate the random thermal velocity to the mean grav-
itational potential of the cluster. The quantitative result depends
on how the structure is modeled (for example, how the mean radius
is defined in estimating the depth of the potential); typically, about
1% of the stars in a Maxwellian would have enough energy to escape.
In practice, the stellar distribution function is cut off at the escape
energy. As the distribution function collisionally relaxes towards a
complete Maxwellian, there is a steady efflux of stars with positive
energy. The remainder of the cluster contracts as it loses mass and
its total binding energy grows in magnitude. The loss of mass is
more important, and would imply a deepening of the gravitational
potential well even were no energy lost to evaporation.

This fundamental problem of cluster thermodynamics also ap-
pears if one considers the equilibrium distribution of the orbital pa-
rameters of a binary star in thermal contact with a heat bath (the
cluster) at temperature 7. In equilibrium, the probability of be-
ing in a state of energy E is proportional to exp(—E/kpT). The
energy E = —Gmyms/(2a), where the stars have masses m, and
mg, and a is the semi-major axis of the orbit of their separation
vector. As a — 0, E — —oo, and the probability diverges. It is
not possible to sum over these probabilities to obtain a partition
function. Thermodynamic equilibrium is not possible, for essentially
all the equilibrium probability density is in states of infinite bind-
ing energy. In practice, a binary star would not rapidly contract to
an orbit of infinitesimal size, because as its orbit becomes smaller,
its rate of relaxation by encounters with the stars making up the
thermal bath rapidly decreases. The distribution of orbital param-
eters is always determined by the rates of relaxation processes, and
never by a thermal equilibrium distribution function. The atomic
version of this equilibrium catastrophe (aggravated by the rapid ra-
diation of an orbiting classical electron) was a fundamental problem
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of physics resolved by the quantization of atomic states. Discs of
matter orbiting a central object (3.6) present an analogous problem;
a dissipative process (viscosity) draws matter into the central gravi-
tational potential well, as the distribution of matter relaxes towards
an (unattainable) equilibrium.

The inner parts of a globular cluster may be compared to the
hypothetical binary star, with the outer parts representing the heat
bath. Essentially all the equilibrium probability is in states which are
“down the black hole” of infinitely tight binding. The cluster never
actually comes to equilibrium, and the calculation of its properties
requires the calculation of its nonequilibrium relaxation processes.

The collisional relaxation time for gravitating masses, such as
stars in a cluster, may be calculated in essentially the same way as for
charged particles in a plasma (2.2). The stars themselves only rarely
collide, but their paths are changed by their mutual gravitational in-
teraction. In carrying out the integration over impact parameters the
upper cutoff is not the Debye length, for there is no Debye shielding
in gravitational interactions (in the unattainable state of complete
thermodynamic equilibrium there would be anti-shielding). Instead,
the integration is cut off at the geometrical size of the cluster, or that
of the dense core region in which collisional relaxation is important.
The result (Lightman and Shapiro 1978) for clusters all of whose

stars have the same mass is a characteristic relaxation time

’U3
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which has been evaluated at the radius R which includes half of the
cluster mass; in the logarithm N was taken equal to 10°. In (2.4.1)

(2.4.1)

V., 18 the dispersion of the stellar velocities, m the stellar mass, n the
mean density of stars inside of R, and N the total number of stars in
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the cluster. The coefficient differs somewhat from that obtained in
2.2 because an attempt has been made to allow for the nonuniformity
of the cluster. The argument of the logarithm may be obtained
from (2.2.10), replacing Z1Zse?> by Gm?, Ap by R, and using the
virial theorem to estimate the velocity dispersion; the (uncertain)
coefficient of NV depends on the quantitative structure of the cluster.

The most important single implication of (2.4.1) is its order of
magnitude. For a globular cluster the factors in parentheses are of
order unity, so that the relaxation time is much shorter than the
age of the cluster (globular cluster ages are estimated from stellar
evolutionary arguments to be about 1010 years, close to the age of
the Galaxy). Dynamical evolution is important for globular clusters.
In contrast, for elliptical galaxies N ~ 10!, R ~ 10,000 pc, and ¢,

is more than 1016

years; dynamical evolution is completely insignifi-
cant, unless there is an inner region with much higher density. Such
a region must have n much greater than that of a globular cluster
because of the factor v3, in (2.4.1), which is much larger in elliptical
galaxies. There would be no reason to suspect the existence of such a
region, were it not for the unexpected existence of quasars, other non-
stellar activity in galactic nuclei, and a few observed pseudo-stellar
nuclei.

There is a second time scale of interest for a globular cluster,

the dynamical time t4 required for a star to cross the cluster:
ta = R/vp,. (2.4.2)

There is another significance to t4. On time scales much shorter than
t, collisions may be ignored, and the Boltzmann equation (2.1.9)
for the stellar distribution function f becomes the Vlasov equation
(2.1.4) (closely related to the Vlasov equation used in the theory of
collisionless plasmas):

df _0f 5 0 ge.9f _
= T g Ve s =0, (2.4.3)
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where @ is the cluster gravitational potential. Some distribution
functions imply df /0t = 0, but some do not. If not, then the char-
acteristic time scale on which f changes is of order R/v or v/V®,
each of which is of order ¢;. This rapid change in f is called violent
relaxation.

There is no complete criterion, other than (2.4.3) itself, for the
occurrence of violent relaxation. Thermodynamic equilibrium guar-
antees its absence, but it will not occur for many nonequilibrium f.
Because f is a function of 6 variables (aside from time) it may be
very complex. Several well-known examples of nonequilibrium distri-
bution functions which do not undergo violent relaxation exist. For
example, begin with a spherically symmetric cluster in equilibrium,
with the distribution function isotropic and Maxwellian everywhere
(except for the missing positive-energy tail). Define an arbitrary
axis through the cluster center. Then, for each particle with posi-
tive azimuthal velocity about that axis, reverse the sign of the az-
imuthal component of its velocity. This bizarre distribution function
will not undergo violent relaxation. V® has no azimuthal compo-
nent, because the density is spherically symmetric. df/0¥ is not
changed by the velocity reversal, except for its azimuthal component,
so V® - (0f/07) is unaffected by the velocity reversals. Similarly,
df /07 has no azimuthal component, while it is only the azimuthal
component of ¥ which changes, so ¥- (0f/07) is likewise unaffected.
Hence, if 0f /0t = 0 before the reversal, it is still so afterwards. It is
even more remarkable that the cluster remains spherically symmetric
despite having a large angular momentum. Only on the longer colli-
sional time scale ¢, will f change, and the cluster shape will flatten.
Recall that for elliptical galaxies ¢, is extremely long. This has led
to the suggestion that the shapes of elliptical galaxies, in contrast to
those of stars, planets, and globular clusters, may not be simply re-
lated to their angular momenta. Another example is a disc-like (but
non-rotating) distribution of stars with a large isotropic velocity dis-
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persion in the disc plane, but negligible velocities perpendicular to its
plane. There may also be bar-like structures with one-dimensional
velocity dispersions, and superpositions of two or three orthogonal
bars or discs.

When violent relaxation occurs its consequences are not simple.
It is natural to assume that the distribution function acquires a fine-
grained structure in phase space as a result of rapid “scrambling,”
and that if one averages over this structure the resulting coarse-
grained distribution function will then satisfy the Vlasov equation
with 0f/0t = 0. This averaging is reminiscent of the turbulent
mixing of two diffusionless fluids, or of Gibbs’s explanation of the
entropy of mixing. Because no thermodynamic principle determines
the end point of violent relaxation, it is not possible to specify it
in advance. Violent relaxation is therefore very different from col-
lisional relaxation, which we believe rapidly leads to a Maxwellian
distribution. The latter belief is founded on the knowledge that a
Maxwellian is a stationary solution to the Boltzmann equation, and
is the solution of highest entropy. Except in pathological cases (for
example, when one degree of freedom is completely uncoupled) it is
probably the only stationary solution. No such governing principle is
applicable to violent relaxation. Fortunately, it is rapid, and there-
fore is feasible to calculate numerically; some results are reviewed by
Lightman and Shapiro. One consequence of the absence of a ther-
modynamic principle is that the endpoint may preserve a memory of
the initial conditions in complex and subtle ways. Observation of a
system which has undergone violent, but not collisional, relaxation,
such as an elliptical galaxy, may give interesting information about
its formation.

The ratio of the dynamical to the collisional time scale may be
calculated from (2.4.1) and (2.4.2):

tr N

. (2.4.4)
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The number of stars N is a measure of the smoothness of the gravita-
tional potential, and of the validity of the separation of violent (col-
lective) and collisional (microscopic) relaxation time scales. In order
that this separation be valid it is necessary that N > 100. Clus-
ters of fewer members are best regarded as complex multiple stars.
This includes many open clusters and clusters of galaxies (where
the fact that galaxies are not point masses adds a further compli-
cation). Clusters of many members have a clear separation of time
scales, which permits the simplification of calculating each process
separately. Once violent relaxation is over, it is possible to calculate
the effects of collisional relaxation by assuming that the particles
move in a static potential, in orbits of nearly constant energy (and
nearly constant angular momentum, if the potential is azimuthally
symmetric).

Because direct measurements of the velocities of individual stars
in globular clusters are difficult, most of our understanding of the
structure and evolution of clusters is based on theory. Although the
theory may be, and has been, tested against counts of stars, mea-
surements of stellar velocities, or the distribution of light in clusters,
they do not test it completely. Like all theoretical “understanding” of
physical phenomena, it is subject to later empirical revision. It may
be more secure than our similar “understanding” of stellar structure
and evolution, because cluster dynamics is founded only upon New-
tonian mechanics. Take this last sentence skeptically; I might not
have written it had I not known of the unexpected result of the solar
neutrino experiment.

The innermost core region of a globular cluster is isothermal,
because the stars within it undergo rapid relaxation of their distribu-
tion function and are spatially mixed. Because the density is highest
here, relaxation is even more rapid than indicated by (2.4.1), which
is an average. Poisson’s equation for the gravitational potential ® in
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such a spherically symmetric region is

1d [ ,d®
— — | =4 ; 2.4.
r2 dr (r dr) mGp (2.4.5)

Using a thermal velocity vy, to describe the stellar velocity distribu-
tion, the equilibrium density p(r) may be written

p(r) = poexp(~0(r) /v3,). (2.4.6)

Then define the dimensionless potential ¢ and radius &

o =®/v3 (2.4.7)
& =ry/4mpoG /v, (2.4.8)

and use (2.4.6) to rewrite (2.4.5):

;—2% (522—(?) = exp(—¢). (2.4.9)

Equation (2.4.9) describes the isothermal core region of all re-
laxed star clusters, and need only be numerically integrated once,
just like the Lane-Emden equation for polytropes of a given poly-
tropic index (1.10). Its derivation would take exactly the same form
for an isothermal collisional gas in hydrostatic equilibrium, so that
it is also the Lane-Emden equation for an isothermal star.

i From Earth we cannot directly measure the density p(r). We
can measure the density o(r) projected along a line of sight which
passes a distance r from the cluster center. By elementary geometry

r! dr’
12 __

_. (2.4.10)

o) =2 [ o)

T T

Given a tabulated p(r) the calculation of o(r) is simple. Less easy
is the inverse problem, of inverting an observed p(r) to obtain p(r).
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This requires the solution of (2.4.10) as an integral equation for the
unknown p(r). If one replaces the integral by a finite sum then p(r)
(defined only at a finite number of points, as p(r) is observed) may be
determined from a set of linear equations, solved by matrix inversion.
Unfortunately, inverting a matrix of data, containing observational
error, is much more treacherous than inverting a matrix of exactly
known numbers. Observations of the inner parts of globular clusters
are at least consistent with the isothermal core model.

Outside the isothermal core is a region known as the halo. This
is roughly defined by the condition that collisional relaxation is very
slow, because the density is lower than in the core. Two kinds of
stellar orbits should be distinguished. Those of high angular mo-
mentum never enter the core, and play no part in its dynamical
evolution. Stars may have entered such orbits at an earlier epoch in
the evolution of the cluster, or been born in them. Orbits of low an-
gular momentum enter the core, and undergo dynamical relaxation
there, though most of life of a star in such an orbit is spent in the
halo. These orbits may be considered to be the highest energy part
of the core’s distribution function, having nearly enough energy to
escape the cluster entirely. The mass contained in the halo is not
large, so that the potential may be considered to vary as 1/r.

Stars in halo orbits have energies negative in sign, but of small
absolute magnitude. As the cluster core contracts, stars diffuse
through this region of near-zero energy, with a net flux towards
E = 0. At F = 0 there is a sink in energy space, as stars freely
escape the cluster. The density of stars in nearly-zero energy or-
bits may be estimated roughly but simply (following Lightman and
Shapiro). For an isotropic distribution function the Fokker-Planck
equation (2.1.10), in which the variables are t, Z, and p, may be
transformed by a change of variable into a simpler Fokker-Planck
equation in which the variables are ¢, r, and E. The diffusion coeffi-
cient in energy varies smoothly through E = 0, and may be regarded



Evolution and Collapse of Star Clusters 125

as nearly constant in a small interval around £ = 0. There is nothing
“special” about this energy when a star is in the cluster core, where
nearly all its dynamical relaxation takes place; relaxation depends
on the kinetic energy £ — m®. The “specialness” is only present in
the behavior of the potential as 7 — oo. The diffusion term in the
Fokker-Planck equation dominates the dynamical friction term be-
cause of the abrupt cutoff of the distribution function at £ = 0; near
such a cutoff second derivatives are much larger than first deriva-
tives. Therefore, an energy-independent flux of stars toward zero
energy and escape requires that in the cluster core df/0F be con-
stant for small |E|, or

f(E) x —E. (2.4.11)

A star with energy F has an orbit which extends to a radius
r o« |E|~!, and which has a period proportional to 73/2 or |E|~3/2,
for the orbit outside of the cluster core is nearly Keplerian. All
low angular momentum halo stars move through the cluster core at
nearly the same speed, so the fraction of their lifetime spent in the
core is proportional to |E|3/2. In order to calculate the total number
of stars per unit energy N(E) the cluster contains, the density in the
core f(FE) must be divided by the fraction of its life a star spends in
the core, so that (2.4.11) implies

N(E) x |E|7Y/2, (2.4.12)

We want N (r), the number of stars whose orbits extend to radius
r, per unit radius. Most of the stars found at r have orbits whose
major axes are comparable to 7. Then

dE
N(r)dr = N(E) d—dr  |E|*?dr o< 7=3/% dr. (2.4.13)
r
These stars are spread over a volume ~ 47r2dr, so their volume
density n(r) is
N(r)dr —7/2
dmrzdr O

n(r)

(2.4.14)
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Observation agrees with this theoretical estimate. This confirms
the assumption that most of the stars in the halo have low angular
momentum orbits, and enter these orbits as a result of the diffusion
of core stars to zero energy and escape. Higher angular momentum
stars would not undergo significant dynamical evolution, and their
density would depend on their orbital parameters when formed; they
need not follow (2.4.14).

The halo is cut off at a finite radius by the tidal effects of the
Galactic gravitational field. Beyond that radius, the only stars are
those which are freely escaping, or background (“field”) stars acci-
dentally encountering the cluster.

As stars escape the cluster the total binding energy of those
left behind must increase. Because the mass left behind is decreas-
ing, it must contract into an ever-smaller volume, at ever-increasing
density. A proper calculation of this process requires integrating a
Fokker-Planck equation, but a much simpler calculation reveals its
qualitative nature. Assume that the escaping stars carry away zero
energy; this approximation is rather good, and leads only to a slight
underestimate of the rate of cluster evolution. Use (2.4.1) to estimate
the cluster relaxation time, ignoring the variation of the logarithm,
and use the virial theorem to estimate the velocity dispersion. Con-
servation of total cluster energy implies

Rox N2, (2.4.15)

while the virial theorem implies

N
v? 7 & N~ (2.4.16)

Then the variation of N is given by

dN N
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This may be integrated to give

N P\ 2T
— =(1-— . 2.4.1
Ny ( to) ( 8)

The cluster evaporates entirely in a finite time %3, except for an
infinitesimal fraction of its mass which contains the full initial binding
energy. More detailed calculations show that ¢ is typically 10 to 30
times the initial relaxation time ¢,. In the course of this evaporation
the density and velocity dispersion diverge as the radius contracts to
Zero.

This result is startling and intriguing, particularly because es-
timates of core relaxation times in observed globular clusters are as
low, in some cases, as 107 years. These clusters should collapse soon,
and, unless we are at a “special” and preferred cosmological moment,
others have collapsed in the past. What actually happens, and what
does the remnant look like afterward?

One obvious oversimplification we have made has been to treat
the integer N as a continuous variable. If a cluster is reduced to a
single very tightly bound binary star (N = 2), evolution stops. To
absorb all the binding energy of a cluster of N stars, such a binary
would have to have an orbit whose size is ~ N2 times the initial
core radius. This is not possible for ordinary stars, which are too
large, but a binary made of degenerate stars or black holes could
be sufficiently compact. Even ordinary binaries supply energy to
a cluster as their binding energy grows. The presence of a small
number of binaries may inject enough energy to slow or reverse core
collapse.

Another oversimplification has been to ignore the finite sizes of
the stars. When a cluster contracts sufficiently a significant number
of collisions may occur. Their effect is complex, for many processes
are possible: partial or complete disruption of the stars, re-accretion
of disrupted material by stars, or stellar coalescence. The qualitative
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effect of these collisions is probably to accelerate the cluster evolution
and to produce a small number of more massive stars. These rapidly
evolve to supernova explosion or collapse. If these processes are
important, a cluster core may ultimately either destroy itself as its
stars explode, or leave behind a single black hole. Such processes
taking place in the nuclei of galaxies may be the genesis of quasars.

The endpoint of globular cluster evolution remains controversial.
There is no clear evidence for any relics of core collapse, suggesting
either that the relics are not recognizable as globular clusters, or that
they are recognized as globular clusters and are not obviously distin-
guishable from clusters which have not undergone core collapse. The
former possibility seems unlikely, for there should be some halo stars
in orbits of high angular momentum. These stars never enter the
core, and suffer no dynamical evolution, regardless of what happens
in the core. They would remain behind as a dilute globular cluster,
with little central condensation. It may be that many of the globular
clusters we observe are such relics, and that their masses were once
much larger than they are today.

2.5 Nonthermal Particle Acceleration

2.5.1 Spectral Shapes If a population of classical particles (or pho-

tons) has relaxed to thermodynamic equilibrium at temperature T,
then the probability n(E) that a state of energy E will be occupied
is proportional to the Boltzmann factor exp(—E/kpT). At high
particle density the effects of quantum statistics become significant,
and this exponential is replaced by [exp(a + E/kpT) + 1]7!, where
—akpT is the chemical potential, and +1 applies to fermions and
—1 to bosons; in this discussion we need consider only the classical
Boltzmann factor.
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The rate of emission F'(v) of photons of frequency v from such
an equilibrium gas will be of the form

F(v) = /d3p n(E)F(v, E), (2.5.1)

where F is the emission rate per unit frequency interval of photons of
frequency v by a particle of energy E. For emission by interactions
between two particles n is the density of particle pairs (analogous to
f2 defined in 2.1) whose relative motion has kinetic energy E. For
continuum emission F(v, E) will be a smoothly varying function of
v, dropping to zero at hv = E. A very rough approximation to F(v)
may be obtained by writing

Fo, for hv < F;
Fv, B) ~ {0, for hv > FE. (2.5.2)

Then, using the nonrelativistic relation between p and E (equilibrium
is rarely achieved at relativistic temperatures),

F(v) ~ Fo / d>p exp(—E/kgT)
E=hv

~ Fo h VE dE exp(—E/kpT) (2.5.3)

hv
~ Foexp(—hv/kpT);

in the same spirit as (2.5.2) slowly varying factors have been ignored.
If F(v, E) consists of narrow spectral lines (2.5.3) is the envelope of
a series of narrow spikes corresponding to the spectral lines.

The exponential dependence of n(E) on E and T produces a
spectrum F(v) ~ exp(—hv/kgT). If hv R kgT this exponential usu-
ally gives the dominant frequency dependence of F'(v) (other than
the shapes of individual spectral lines, if present), because it is usu-
ally a much more sensitive function of v than any dependence of
F(v, E) on v which we neglected in (2.5.2). Radiation produced by
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Figure 2.1. Spectral shapes.

matter in thermal equilibrium almost invariably has the exponential
frequency dependence of (2.5.3) at frequencies v ~ kT /h. At lower
frequencies F'(v) depends more on the form of F(v, F) and on the
optical depth of the source, approaching the Planck function (1.7.13)
if the optical depth is high.

When plotted on a log-log plot, (2.5.3) has a characteristic
curved shape, and defines the characteristic energy kT (Figure 2.1).
Many astronomical objects have spectra like this, and it is often pos-
sible to recognize the shape (2.5.3) and to estimate kpT at a glance,
even from poor quality data.

Other astronomical objects have spectra which are nearly
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straight lines on a log-log plot, corresponding to power law spectra
F(v) xv™?, (2.5.4)

where the spectral index s is nearly constant. Such a spectrum (and
only such a spectrum) defines no characteristic frequency, and hence
no characteristic energy of the radiating particles. An example is
shown in Figure 2.1.

A power law spectrum of the form (2.5.4) cannot be extrapolated
indefinitely to both high and low frequency, because if it were the
integrated power [ F(v)dv would diverge. There must be at least
one change in s, and the frequency vy at which it occurs defines a
characteristic energy hvy. However, a power law spectrum is often
found over several decades of frequency, which indicates that over
a large range in energy of the radiating particles their distribution
function n(E) also has no characteristic energy. Such a n(E) is also a
power law, and may have this form over a very wide range in energy,
but similarly must have at least one break in its slope in order that
the integrated number density and energy density be finite.

Bodies in thermal equilibrium may produce power law spectra
at frequencies for which hv < kgT. At low energies n(FE) is nearly
constant (or proportional to E for bosons with zero chemical po-
tential), which are (uninteresting) examples of distributions with no
characteristic energy. The simplest and most familiar example of a
thermal equilibrium power law spectrum is that of a black body at
hv <« kgT, called a Jeans spectrum, for which s = —2; the power
law slope is broken at hv =~ kgT. Optically thin thermal emitters
produce power law spectra for hv < kgT if their emissivity inte-
grated over the distribution function is a power law function of v;
bremsstrahlung (2.6.1) is a familiar example. Thermal emitters with
power law distributions of temperature also produce power law spec-
tra, as discussed in 3.6 for accretion discs. In this case the power



132 Non-Equilibrium Thermodynamics

law slope is broken at hv =~ kgT., where T, is a characteristic tem-
perature (typically a break in the distribution of temperature).

The most interesting sources of power law spectra are those
in which there is no characteristic energy because the particles are
not in thermal equilibrium, but instead n(F) is a power law over
a wide range of energies. Usually these are very relativistic ener-
gies E > mc?; the rest mass is another characteristic energy and
will generally interrupt both a power law n(FE) and the power law
spectrum it radiates. It is equally possible to have a power law
n(E) for E < mc?, but such lower energy nonthermal particles are
usually less interesting as sources of astronomical radiation; they are
significant in laboratory and astrophysical plasma physics. The pres-
ence of power law n(E) are inferred from observations of power law
F(v) in quasars, active galactic nuclei, extragalactic radio sources,
many Galactic radio sources (particularly those associated with su-
pernova remnants), and a variety of compact objects. A power law
n(FE) is directly observed for cosmic rays, with energies extending to
210 eV.

2.5.2 Particle Acceleration In order to understand the origin of a

nonequilibrium particle distribution function n(E) it is necessary to
understand the processes by which particles gain and lose energy. In
2.2 and 2.3 we considered the relaxation towards thermal equilib-
rium of distributions of charged particles and photons in contact with
a heat bath. These processes cannot produce power law distributions
of very energetic particles, because their energies exceed the thermal
energy per particle of any conceivable heat bath. We are here con-
cerned with processes which can accelerate energetic particles as the
consequence of many small increments to their energy.

Fermi (1949) suggested a mechanism for the acceleration of en-
ergetic cosmic rays (Longair 1981); it may be applied to particles
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scattering within any dilute moving medium, such as discs (3.6) or
accretion flows (3.7). This mechanism is called stochastic accelera-
tion because it involves numerous uncorrelated random events. Par-
ticles are accelerated as a result of their scattering by moving massive
objects. In the interstellar medium these objects could be interstellar
clouds or magnetohydrodynamic waves; charged particles are elasti-
cally scattered by clouds by being deflected by their magnetic fields.
This process may be thought of as the relaxation of the particles
and the clouds (considered as single very massive particles) towards
thermal equilibrium. Because the kinetic energies of the clouds are
enormous (~ 1045 erg for plausible interstellar clouds, corresponding
to T ~ 10°! °K), equilibrium can never be reached, but there will
be a net energy flow from the kinetic energy of the clouds to that
of relativistic particles. There is, in principle, no characteristic en-
ergy scale between the particle rest mass energy mc? and the kinetic
energy of an entire cloud, so that a power law distribution of par-
ticle energy may be achieved over a very large range in energy (in
practice, various energy loss mechanisms have thresholds which may
serve to define characteristic energies).

A relativistic particle of energy F elastically scattered by an
object of velocity v < ¢ suffers an energy change

AE~O(B2). (2.5.5)
c
This change in energy is as likely to be positive as negative, for
isotropically distributed cloud velocities. There will, however, be a
mean positive energy shift

v

(AE) ~ O (E 2) . (2.5.6)

c2

The numerical coefficient in (2.5.6) is of order unity but depends
on the detailed geometry and kinematics of the scattering, which
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depend on the (unknown) details of cloud magnetic field geometry.
This energy transfer process is analogous to Comptonization (2.3)
in the soft photon limit, with clouds instead of electrons and the rel-
ativistic particles instead of low energy photons; the rate of energy
transfer from the electrons (clouds) to the photons (particles) is pro-
portional to the product of the photon (particle) energy density and
the electron (cloud) kinetic energy density (2.3.31).

After N > 1 scatterings a relativistic particle whose initial en-
ergy was Fy has an energy of approximately

E ~ Egexp(B2N), (2.5.7)

where the parameter 35 = v/c. If E > FEj the dispersion in In(E/Ey)
will be less than its mean value, so it is reasonable to take the mean
value and ignore the dispersion, as in (2.5.7).

Particles will not gain energy forever. Eventually losses will be-
come significant. Consider sudden random catastrophic losses, such
as escape from the region in which acceleration takes place, and (for
strongly interacting particles) nuclear collisions in which most of their
energy is lost. It the characteristic loss time is 7', independent of en-
ergy, then the fraction of particles surviving for times between ¢ and

t+dtis
exp(—t/T)
T
If the mean rate of scattering of particles by clouds is 1/7, then
N = t/7 (which holds accurately for ¢t > 7), and after a time ¢ a
particle has the energy

N(t) dt = dt. (2.5.8)

E(t) =~ Egexp(B2t/T). (2.5.9)
The energy distribution is found

dt
N(E) dE = N(t)d—EdE
_exp(=t/T) 7

(2.5.10)
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Using (2.5.9) to express ¢ in terms of E yields

—(1+7/B.T)
T < b ) . (2.5.11)

NE)~ —— | —
(E) BETEy \ Eo

This is a power law distribution, and has the spectral index
p=1+17/B2T. N(E) is the total number of particles per unit en-
ergy interval; for relativistic particles or photons N(E) o E?n(E).
The absence of a characteristic energy, as expressed in the expo-
nential functions of (2.5.8) and (2.5.9), makes the power law form
inevitable. A very similar derivation applies to soft photon Comp-
tonization (2.3) in a finite volume, in which escape from the volume
is the loss process, and power laws are similarly predicted.

In problems of interest the spectral index p is of order unity;
for cosmic rays it is observed to be close to 2.6, and for relativistic
electrons in sources of synchrotron radiation it is typically between
2 and 3. There is probably no deep significance to the fact that p is
generally found in such a narrow range. For p < 2 the total energy
density diverges as £ — oo, so values smaller than 2 are unlikely
to describe N(E) over a very wide range of energy. For p ~ 3 the
energy contained in very energetic particles is very small; the high
energy parts of such steep distribution functions therefore produce
little radiation, which is less likely to be detected than that produced
by regions or objects in which p is smaller.

There is no obvious a priori reason why the parameters 7, (3,
and T should be as closely constrained as is p. For cosmic rays it
is known from studies of their nuclear abundances that T ~ 107 yr,
while from observations of the interstellar medium B, ~ 3 x 1079%;
7 depends on the microstructure of interstellar magnetic fields and
can only be guessed at. For regions in which energetic electrons
are accelerated all these parameters are very uncertain. The likely
explanation is that the energetics of the accelerating process is self-
regulating. The mean energy per particle is Fo(p —1)/(p — 2). As
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p — 2 the power required to accelerate the energetic particles di-
verges, so particle acceleration becomes a strong damper on the cloud
motions or waves which drive it. As p — 3 the power required to
accelerate the particles becomes a small multiple of the power re-
quired to inject them at energy Ey. fBs and 7 (which depend on the
detailed distribution of fluid velocity, wave amplitude, and magnetic
field) may adjust themselves so that the power supplied to the en-
ergetic particles equals that supplied to the accelerating clouds or
waves (for cosmic rays in our Galaxy probably the kinetic energy of
supernovae). This naturally leads to 2 < p X 3 for a wide range of
parameters.

We have so far assumed an energy change quadratic in 8; < 1.
A particle may occasionally be trapped between two converging re-
flectors. Then the energy change on each scattering is positive, and
the mean energy increment is linear in ;. In a chaotic flow pe-
riods when a particle is trapped between converging reflectors are
balanced, in part, by those when it is trapped between diverging re-
flectors (but not completely balanced, because as reflectors converge
the mean time between scatterings becomes progressively smaller,
while as they diverge it becomes larger). In an ordered converging
flow the particles will always be in a region of convergence, in which
case 32 should be replaced by 3 in the previous results. This leads
to much more rapid acceleration. An example of such a converging
flow is that around a shock (3.3); if the fluid on each side contains
magnetic disturbances capable of scattering the particles they will
gain energy rapidly. Shocks are therefore promising locations for
particle acceleration. It may even be that much of the kinetic energy
released in some shocks appears in accelerated high energy particles
rather than the internal energy of the shocked fluid.

Fermi acceleration is capable of accelerating high energy parti-
cles to yet higher energy, but does not answer the question of their
initial acceleration. The theory is applicable to nonrelativistic par-
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ticles, if their speed v, is used in place of ¢, but at low energy their
rate of slowing by Coulomb drag (2.2) exceeds their rate of acceler-
ation. Approximately, the loss rates by Coulomb drag, hard nuclear
collisions, and escape may be added to give T—1; if T ~ 7/32 at rel-
ativistic energies, as must be the case, then for E < mc? Coulomb
drag will probably overwhelm any acceleration. However, it is con-
ceivable that if there are no relativistic particles 7/42 will decrease
until it equals the Coulomb slowing time for a few of the fastest
thermal particles; once these particles are accelerated to relativis-
tic energy it will increase again as they rapidly gain energy and the
energy balance regulates itself. If this does not occur (and there is
no evidence for it), there is a large gap in energy between thermal
particles and those moving fast enough for Fermi acceleration to be
effective.

There is another process, analogous to Fermi acceleration but
involving plasma oscillations instead of magnetized gas clouds or hy-
dromagnetic waves, which may be capable of bridging the energy
gap. This process draws energy from the plasma waves and is called
Landau damping, but because it accelerates particles it may also be
called Landau acceleration. Its essential property is that it is reso-
nant, meaning that a given plasma wave can accelerate only particles
with a very narrow range of velocity. As a result, it may be effective
in accelerating low energy particles, where rapid acceleration is nec-
essary to overcome Coulomb drag, without an excessive amount of
energy being drained from the plasma waves by the further accelera-
tion of particles which are already relativistic. The theory of Landau
damping is subtle, but is explained in innumerable books on plasma
physics; see, for example, Nicholson (1983). Here we present only a
simple and elementary argument.

Consider a particle of charge e and velocity v suddenly placed
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in an electric field
E(x,t) = Egcos(kx — wt). (2.5.12)

We ignore the subtlety of the problem by replacing a careful inves-
tigation of the initial conditions with a “suddenly.” The particle is
accelerated

dv

mo = eEy cos(kx — wt). (2.5.13)

If E is in the z-direction (a longitudinal wave) z ~ [vdt, and it
is necessary to expand v in a series in powers of eFEy/mw, keeping
terms of the second order. A similar result is obtained much more
simply for transverse waves. In this case we can write x = v,t and let
(2.5.13) describe the particle motion in the direction of the electric
field, taken to be z. Then

eEy

m sin[(kv, — w)t], (2.5.14)

Vy =

and the particle’s transverse motion has a kinetic energy

1mvz = <" Ey
2% 2m(kv, —w)

The resonant nature of the acceleration is evident; particles

5 sin®[(kvg — w)t]. (2.5.15)

whose velocity v, is close to the wave phase velocity w/k receive
a great deal of energy. We assume nonrelativistic motion, and in-
tegrate (2.5.15) over the velocity distribution function f(v,), taken
to be slowly varying near v, = w/k. Then the total kinetic energy
imparted to the particles by the wave is

K = / %mvff(vm) dvy
_EEjf(w/k) / sin?[(kvg — w)t]d

2m (kvy — w)? v
o (2.5.16)
_EEGf(w/k)t /°° sin”u
- 2mk oo UZ

_me?ES f(w/k)t
- 2mk ’
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and the power is
ne? B3 f(w/k)
2mk ’

The approximations in these equations approach equality as t — oo

P (2.5.17)

and the integrand becomes sharply peaked.

The calculation for longitudinal waves (Nicholson 1983) shows
that particles with v, < w/k gain energy from the wave, while those
with v, > w/k give up energy to it. The total power supplied
to the particles resembles (2.5.17), but in place of f(w/k) there is
(w/k)f'(w/k) (which is generally of the same order of magnitude).

Particles moving with the phase velocity of plasma waves will be
accelerated by the waves. Because this acceleration is random in di-
rection and sign (depending on phase and polarization for transverse
waves, and phase and the sign of w/k — v, for longitudinal waves),
particles diffuse in momentum space. This resembles the b term in
the Fokker-Planck equation (2.1.10), the 8*n/0z2 term in the Kom-
paneets equation (2.3.21), and the scattering of relativistic particles
by moving magnetized clouds or hydromagnetic waves (2.5.7). If the
plasma waves are only excited to a thermal level (an average of kT
per degree of freedom) this diffusion is only a small increment to the
diffusion (2.2.17) produced by encounters between the particles, and
is exactly cancelled by an additional drag term resulting from the
emission of plasma waves by particles. However, if plasma waves are
excited to a high intensity by a plasma instability, the rate of mo-
mentum diffusion may be large and the rate of acceleration rapid.
A variety of plasma waves exist with a broad range of phase veloc-
ities and may be excited to high intensity, so it may be possible by
this mechanism to accelerate particles from the high velocity tail of
a Maxwellian distribution to much higher (possibly even relativistic)
velocities. This phenomenon is observed in many laboratory plasma
experiments, and is a frequent consequence of plasma instability.

It is also possible to accelerate energetic particles with a single
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large potential drop, without the necessity of their diffusing in energy.
This is believed to occur in pulsars (4.4). It may not occur elsewhere,
because astrophysical plasmas are usually good conductors, and it is
not easy to produce large potential drops, although they may occur
transiently as a consequence of complex magnetohydrodynamic flows
called “field reconnection,” in which current densities are high and
scattering by plasma waves impedes the flow of current and leads
to a temporarily large resistivity. Acceleration by a single potential
drop does not lead to the observed power law particle distribution
functions, but the effects of many potential drops, with a power law
distribution of accelerating potentials, may.

Colgate and Johnson (1960) suggested that purely hydrody-
namic processes could accelerate power law distributions of ener-
getic particles. As a shock travels into a medium of progressively
decreasing density (the atmosphere of an exploding star 4.3, or an
interstellar density gradient) the velocity and energy (per particle)
of the shocked fluid progressively increase. Although locally it may
be in thermal equilibrium, the overall distribution of kinetic energy
per particle approximates a power law. This mechanism has diffi-
culty explaining some of the observed properties of cosmic rays, for
which it was proposed, but it may be capable of providing the ini-
tial acceleration across the velocity range in which Coulomb drag is
important.

A great wealth of detailed mechanisms for particle acceleration
have been discussed (Arons, et al. 1979); it is likely that different
ones are important in different objects. All of them depend on the de-
tailed distribution of fluid velocity, magnetic field, or plasma waves.
For this reason acceleration is difficult to calculate even in laboratory
and Solar System plasmas, where direct probes and abundant data
exist. In a remote astronomical object the problem is much harder.

Phenomena involving nonthermal particles pose the most diffi-
cult problems in astrophysics. They are nearly ubiquitous, and are
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observed in the solar photosphere as a consequence of turbulent con-
vection, in planetary magnetospheres as a consequence of interaction
with the Solar wind, as well as in more exotic and distant places.
Much of the power of some pulsars, quasars, and ~y-ray sources ap-
pears as energetic particles, but there is no quantitative understand-
ing or theory. Although it is not possible to predict the properties of
nonthermal phenomena, the astrophysicist should not be surprised
by their appearance. They are likely to be found wherever fluid mo-
tions are available as a source of free energy, whether turbulent or
ordered, as in accretion, shocks, or the differential rotation of a disc.

2.6 Radiation Processes

Matter absorbs, emits, and scatters radiation by a variety of pro-
cesses. These are usually the chief mechanisms by which radiation
and matter relax towards thermal equilibrium. Nearly all our knowl-
edge of astronomical objects is obtained from the study of their radi-
ation, and their properties and structure usually are determined by
the emission and absorption of radiation within them. Fortunately,
most radiation processes are well understood. Their calculation is
often tedious or difficult, but quantitative results are available. In
this section I present a few simple results for important processes. I
have drawn upon the book of Rybicki and Lightman (1979), which
contains more complete discussions and derivations of most of these
results, and references to the literature.
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2.6.1 Bremsstrahlung When a charged particle is accelerated it

radiates. An important example is the acceleration of an electron by
a Coulomb field, in which case the radiation is called bremsstrahlung.
In the nonrelativistic limit the instantaneous power radiated by a
system of charges is )

2d?

where d is any one component of the electric dipole moment d of
the system; contributions from each component are added. In this
limit the acceleration of an electron by another electron produces
no radiation, because the opposite accelerations of the two electrons
produce no net change in d (At relativistic energies electron-electron
bremsstrahlung is comparable to electron-ion bremsstrahlung). The
spectral density radiated in a single encounter is

dWw B 8w

“ 2

where d is the Fourier transform of d:

~ 1 oo
d(w) = — / e“td(t) dt. (2.6.3)
2 J_

A quantitative calculation of bremsstrahlung is lengthy (and
must be performed quantum mechanically). Instead, we use these
classical expressions and make rough approximations in order to pro-
vide an illustriative guide. The dipole moment d represented by an
accelerated electron of charge —e at position 7 is

d = —er. (2.6.4)

The fixed origin of coordinates is irrelevant, because we are only
interested in time derivatives of d, but may be conveniently taken at
the ion of charge Ze from which the electron scatters, or the center
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of mass of the two particles. Taking two time derivatives of (2.6.4)

and considering only one component gives
d = —ed. (2.6.5)

The Fourier transform of (2.6.5) is

/ei“’td. dt = —e/ei‘*’ti) dt. (2.6.6)

Integrating the left hand side by parts twice, and using (2.6.3), yields

T2

w?d(w) ¢ /ei“’t'i) dt. (2.6.7)

Now consider an electron approaching an ion at speed v and
impact parameter b. If its deflection is not large we may calculate
the force on and acceleration of the electron as if its path were a
straight line. Most (55%) of its radiation occurs during a time inter-
val 7 = b/v when the electron is within a distance bm of the ion;
outside this interval the power is less than 0.64 of its peak value. The
cumulative impulse and change in velocity Av is found by integrat-
ing along the undeflected trajectory the component of acceleration

—Ze? /°° b dt
Av =
me J_o (0% + v2t2)3/2

272

mebv’

normal to it:

(2.6.8)

the impulse parallel to the trajectory integrates to zero in this ap-
proximation.

For very high frequencies wr > 1 and the exponential in (2.6.7)
has many cycles of oscillation over the range over which v varies
significantly, so the positive and negative phases of the integrand
nearly cancel. At low frequencies wT < 1 and the exponential may



144 Non-Equilibrium Thermodynamics

be taken to be unity where v is significantly different from zero.
Considering only these two limits, and ignoring the more difficult

intermediate regime, gives

) eAv . 1.
dw) ~ { ooz OTWT <L (2.6.9)
0 for wr > 1.

Substitution into (2.6.2) gives

2 6

AW 8Z%e

dio R 3mc3m2bZo?
0 for b > v/w.

for b < v/w; (2.6.10)

It is now necessary to integrate over the distribution of inpact
parameters to obtain the spectral density dP/dw radiated by an elec-
tron with speed v passing through a gas of ions of density n;:

E = niv/ ﬂ%’b db
dw o dw
_ 16n;2%° /“/“ db
o 3c3m2u '

(2.6.11)

A lower cutoff b,,;, has been introduced into the integration to avoid
the logarithmic divergence at b — 0. Physically, the origin of b,,;x,
is the breakdown of either the small deflection approximation for
b S Ze? /mev? or of the classical approximation for b N h/mev. A
more quantitative calculation must include both these effects, and is
rather lengthy. The ratio between the accurate result and a rough
approximation like ours is called the Gaunt factor g. This factor has
been calculated in detail, and is usually of order unity. The spectral

density is
dP  16mn;Z%e’ ( )
— =——9¢g(v,w
dw 3v/3m2v Atdets

where the extra factor of 7/+/3 is required by the standard definition

(2.6.12)

of g.
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To compute the total power radiated integrate (2.6.12) over fre-

quency, cutting off the integration at hw = %mv2 because photon
energy is quantized (without this cutoff, which is implicit in g, the

power would diverge). The result is

_ 8mn; Z%eSv(g)

Pyrems = 2.6.13
k 3v/3c3moh ( )

This power may be compared to the rate at which the electron loses
energy to other electrons by Coulomb drag (using 2.2.9; n, = Zn;
and mya = me/2). Their ratio is

Pyrems . Z(g) i i
Pdrag 3\/§lnA ¢ he

(2.6.14)

The last factor is the fine structure constant «, and is nearly equal to
1/137. 1t is evident that for nonrelativistic electrons (the only case
to which these results are applicable), bremsstrahlung energy loss is
very small compared to Coulomb drag.

Now integrate (2.6.12) over a Maxwellian distribution of electron
velocities. To do this quantitatively requires knowledge of g(v,w); in
the result this is absorbed into a new integrated Gaunt factor g(T, w).
The integration begins at v = \/W, because lower speed elec-
trons cannot produce a photon of frequency w. The resulting emis-

sivity is
. . _3g Meni 2 erg
](T, LU) =7x10 TI/Z exp(—hw/kBT)g(T, W)m
(2.6.15)

The physical origin of the T—1/2 factor is the v~! in (2.6.12), which
in turn comes from the square of the v=! in (2.6.8) and the v in
(2.6.11). The characteristic exponential comes from the Maxwellian
distribution function, as discussed in 2.5.1. Because this contains
the only strong dependence on w in (2.6.15), the spectrum of ther-
mal bremsstrahlung resembles the exponential shown in figure 2.1.
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Such a spectrum is actually observed from dilute clouds of ionized
interstellar gas. Bremsstrahlung is believed to be important in many
more compact objects, but in these objects the optical depth (1.7.23)
is large, re-absorption of the radiation is important, and the emer-
gent spectrum (1.14) does not resemble the source function (2.6.15);
in the limit of large optical depth (for example, a star) the emergent
spectrum is close to a Planck function (1.7.13).

2.6.2 Magnetic Radiation An electron moving across a magnetic
field B is accelerated by the field, and therefore radiates. This is
known as cyclotron emission. The electron follows a helical path,

gyrating about B with an angular frequency

eB

wp = , (2.6.16)
Ymec
where v = (1 — v2/¢?)~/2, and a radius of gyration
YMecv )
=1 == 2.6.17
Tg eB Y ( )

where v, is the magnitude of the component of velocity perpendic-
ular to B.

For nonrelativistic motion (v — 1) the radiated power is found
from (2.6.1). There are two oscillating components of d_: each varying
sinusoidally with amplitude er, and frequency wp, but 90° out of
phase. The total radiated power is then

4,22

_ 2wpeTry
cyc —

Y 3c3

412,29

:2er_L

2.5
3mic

(2.6.18)

Cyclotron emission by ions is generally negligible because of the two

powers of m in the denominator.
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Because the motion of a gyrating electron is sinusoidal in time,
in the nonrelativistic limit the radiation is monochromatic at the fre-
quency vp = wp/2m. The component v of electron velocity parallel
to B leads to significant Doppler broadening of the radiation received
by all observers except those in directions exactly perpendicular to
B. In a real astronomical object the magnetic fields are curved, and
all observers will receive Doppler-broadened radiation; B and vg will
also vary from place to place within the emission region.

The kinetic energy %mevi of perpendicular motion is reduced
by cyclotron radiation, and is easily seen to decay exponentially with
an e-folding time

_ 3m3c®
beye = 4et B2
B ) (2.6.19)
=26x107* [ ———— sec.
108 gauss

This time is short for large fields, such as those found in magnetic
white dwarves (B ~ 107 gauss) and magnetic neutron stars (B ~
1012 gauss), and implies that electrons rapidly radiate the kinetic
energy of their perpendicular motion. In such large fields cyclotron
radiation is usually the most rapid radiation process. If ¢,y is small
compared to teq (2.2.24), and the cyclotron radiation freely escapes,
the electron distribution function will become strongly anisotropic.

Cyclotron radiation is, in general, elliptically polarized. This is
a general property of radiation processes in strong magnetic fields,
and is unusual in astrophysics. The elliptical polarization of a few
white dwarves led to the recognition that they have large magnetic
fields, although cyclotron emission is not usually the dominant source
of radiation.

Because electrons in large magnetic fields are such efficient radi-
ators, they are also efficient absorbers of radiation at their cyclotron
frequency. It is generally incorrect to apply (2.6.18) or (2.6.19) di-
rectly to the radiation of a gas of electrons, because the radiation
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emitted by one will be efficiently absorbed by its neighbors. In or-
der to estimate the opacity we need to assume a finite line width
Av. The Doppler width will typically range from ~ .001v for cool
white dwarves to ~ .1v for hot accreting neutron stars; the cyclotron
line will also be broadened by a variety of collisional and plasma pro-
cesses. From (2.6.18) and (1.7.13) we obtain the cyclotron absorption
opacity

Reye = 3

Av/ BZhmy e

01y B -t
~ 3 x 10 2
8 ( Av ) (106 gauss) om’/gm,

where p. is the molecular weight per electron. In the numerical

8 < v ) M(l — exp(—hl/B/kBT)>

(2.6.20)

evaluation p. = 1.2 (ordinary stellar matter) and hvp < kpT were
assumed. The corresponding cross-section is ~ e2/(Avmec), which
is the natural cross-section for absorption by an electron considered
as a classical oscillator.

This is usually a very large opacity, much exceeding that pro-
duced by other processes, but applicable only within the spectral
width Av of the line. Cyclotron line radiation therefore flows very
slowly through a magnetized plasma, and the rate at which it radi-
ates is usually much less than (2.6.18) or (2.6.19) would imply. For
a thermal electron distribution function the spectral power density
produced by cyclotron emission cannot exceed the Planck function
(1.7.13). At frequencies far from the line center there is no emission
at all. When the optical depth at the line center is high, the width
of the line becomes important, and broadening processes must be
considered.

Because of special relativistic kinematics the motion of an elec-
tron seen by an unaccelerated observer is not exactly harmonic. Con-
sequently, the radiation is not strictly harmonic at the frequency vp.
Because the motion is still periodic (if radiation damping and colli-
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sions are ignored) the spectrum is a series of harmonics of vp, with
the strength of the n-th harmonic varying ~ (v2 /c?)". The depen-
dence on electron energy and frequency nvp is steep, and cyclotron
harmonic radiation therefore does not follow (2.5.3).

The importance of the harmonics is that the spectral density
may approach the Planck function B, in each of them. If Av/v
is independent of n and nhvg < kT, then the power in the n-th

3

harmonic is ~ AvB, ~ v3 ~ n3, while the total power in harmonics
)

4, Because radiation at the fundamental frequency is

l—nis~n
so strong, rather high harmonics may be produced, especially at
the high temperatures characteristic of accreting degenerate dwarves,
neutron stars, and laboratory plasma machines; harmonics up to n ~
10—100 may be optically thick. Under these conditions the harmonic
lines usually overlap because of Doppler broadening to form a smooth
continuum, Av is effectively constant, and the total radiated power
is ~ n3. Quantitative calculations are intricate; Petrosian (1981)
gives some results and references to the earlier literature.

The radiation produced by a relativistic electron in a magnetic
field, called synchrotron radiation, is also of interest. Most inferences
of the presence and acceleration of energetic electrons are based on
the observation of their synchrotron radiation, usually at radio fre-
quencies (in supernova remnants and extragalactic radio sources) or
in visible light (in many quasars and active galactic nuclei, and the
Crab nebula), but occasionally in X-rays (in the Crab nebula, and
probably other objects). This radiation is readily identified because
it is strongly linearly polarized, and has a featureless power law spec-
trum (when produced by electrons with a power law distribution of
energies); there is usually no plausible alternative way of producing
radiation with these properties.

The relativistic generalization of (2.6.18) is (Rybicki and Light-
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man 1979, Jackson 1975)

2v2e*B?v?

2.6.21
3m2cd ( )

Psynch =

Most of the emitted radiation is at frequencies a few times lower than
a characteristic frequency (defined differently by different authors)

Ve = 3731/3 sin o
_ 3v%eBsina (2.6.22)
 2Tmec

where « is the pitch angle of the electron’s helical motion (o = 0
for motion parallel to B , and a = 7/2 for circular motion in a plane
normal to E) This corresponds to harmonic numbers n ~ 33 sin a;
for ~ R 1 the harmonics overlap and the spectrum is a smoothly
varying continuum.

The integrated spectrum produced by electrons with a power
law distribution of energies

N(E) = NyE™? (2.6.23)

is given by (2.5.1). Using E = ymec? and n(FE) d3p = N(E) dE, and
taking v > 1, we obtain

F(v) ~ /Nofy_p}"(u, v) dry. (2.6.24)
Now p
Fv,7) ~ 557"0’15(;//%), (2.6.25)

where the single function S describes the shape of the emission spec-
trum as a function of v/v, at all relativistic energies. Then, using
(2.6.21) and (2.6.22), and noting that v is a variable independent of
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7y or v,

F) ~ / VS (v fve) dy

~ /ygp/2$(u/yc)y§/2 d(v; 1) (2.6.26)

~ y~ (= 1)/2 / w/ve) P2 S(w/v,) d(v/v.) .

The last integral depends only on the function & and the limits of
integration; if the form (2.6.23) extends over a wide range in E then
over a wide range of v these limits may be taken to be 0 and oo, and
the integral is a number independent of v. The integrated spectrum
is then a power law (2.5.4) with spectral index

p—1

5= (2.6.27)

This power law and linear polarization are the characteristic
signatures of a synchrotron source; most frequently 0.5 < s < 1.0,
corresponding to 2 < p < 3. In visible and ultraviolet light such
a spectrum is readily distinguishable from stellar spectra, even by
a crude comparison of the colors measured through broad filters.
Stellar spectra have a pronounced thermal curvature (Figure 2.1),
and therefore stars are almost always fainter in the ultraviolet than
power law sources with similar colors in visible light. This permits
the quick identification of candidate nonthermal sources (such as
quasars) from crude photographic measures of their colors.

The synchrotron power radiated per unit volume is ~ Nyy2B2.
For radiation of a given frequency v, v and B are related by (2.6.22);
eliminating 7, the power is ~ 5652/4, where £, ~ Nyy and g ~ B?
are respectively the relativistic electron and magnetic energy densi-
ties. For a given total energy density & = &, + £€p the maximum
power is obtained if &, = %5 B, close to the “equipartition” condition
E. = Ep. Sources in which equipartition holds, at least roughly, are
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more efficient radiators and more likely to be observed than those in
which it does not hold. Astronomers frequently assume equipartition
in order to estimate source parameters; these parameters describe a
typical source if (and only if) some sources are close to equipartition.

2.6.3 Compton Scattering An electron in an electromagnetic wave
will be accelerated by the wave’s electric field (Unless the fields are
extremely strong, the motion is nonrelativistic and the effect of the
magnetic field may be ignored). Such an accelerated electron will
radiate. If hiw < mec? a classical description is adequate. The
electron’s motion is given by (2.5.14). Integrate this expression with
v, = 0, and use (2.6.4) to obtain

d(t) = Eo cos(wt). (2.6.28)

Using (2.6.1) and integrating over time leads to a mean radiated
power

_ 1e*F
T 3m2c3

(P) (2.6.29)

This power is drawn from the power of the incident electromagnetic
wave, is at the same frequency, and may be described as its scattering
by the electron, called Thomson scattering. The mean power density
of the electromagnetic wave (including both E and E, and averaging
over phase) is Ejc/8x. The ratio of (P) to this power density is the
electron scattering cross-section

8t et

Oes = — —5—-
3 m2ct

(2.6.30)

In order to calculate the angular dependence of electron scattering
it is necessary to consider the angular dependence of the electron’s
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radiated field. The result (Rybicki and Lightman 1979) for the dif-

ferential scattering cross-section is

does 1 et

o =537 (1+ cos?0), (2.6.31)
e

where 6 is the angle between the incident and scattered photon di-
rections. Because (2.6.31) is reflection-symmetric about 6 = 7/2
the scattered radiation carries no momentum in the nonrelativistic
limit; for most purposes (including Comptonization 2.3) correct re-
sults would be obtained even if electron scattering were taken to be
isotropic.

¢From (2.6.30) the electron scattering opacity is

0-68

Res =
PeMyp (2.6.32)

=.20(1+ X) cm?/gm,

where . is the molecular weight (in atomic mass units) per electron
and X is the mass fraction of hydrogen in the matter. For ordinary
stellar composition X = 0.7 and ke = .34 ¢cm?/gm.

It is also necessary to consider scattering by electrons moving at
relativistic speeds. The photon frequency v/ in the electron’s frame
is related to its frequency v in the laboratory frame by the Lorentz
transformation

v = vy(1 - Bcos), (2.6.33)

where v is the electron velocity, 8 = v/c, v = (1 — 82)~'/2, and
Y is the angle (in the laboratory frame) between the unscattered
photon and electron directions. If At/ < m.c? the scattering may
be described as Thomson scattering in the electron’s frame. In that
frame the frequency shift on scattering is small and may be neglected,
as may be the recoil velocity of the electron. The frequency of the
scattered photon in the laboratory frame is then

V' =v'y(1+ Bcosd”), (2.6.34)
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where 9" is the angle (in the electron’s frame) between its velocity
and the the scattered photon’s direction. The angle ¥ is typically
~ 7/2, if the photon and electron distributions are initially isotropic,
and 9 is also typically ~ 7/2 because in the electron’s frame the
scattering follows the Thomson law (2.6.31); neither of these angles is
affected by relativistic beaming. Therefore the factors in parentheses
in (2.6.33) and (2.6.34) are generally of order unity and

V"~ 2. (2.6.35)

For relativistic electrons the photon frequency in the laboratory
frame is multiplied by a very large factor. Scattering is roughly
equivalent to reflection by a mirror moving at the relativistic elec-
tron’s speed. Typically, the scattered photon will be an X-ray or
~-ray, even if the unscattered photon was visible light or from the
3 °K background radiation. Because of relativistic beaming nearly all
the scattered photons travel in nearly the same direction as the elec-
trons from which they scattered; photons scattered by an isotropic
electron distribution are also isotropic.

The result of a more quantitative calculation (Rybicki and Light-
man 1979) is that an electron loses energy at the rate

4
Pcompt = gaesC’Y2ﬂ25ra (2.6.36)

where &, is the radiation energy density. This may be compared
to the energy loss by the synchrotron process (2.6.21), assuming an
isotropic electron distribution function so that (v?) = 282¢?/3, and
using (2.6.30):
Pyynch B%/8%
P Compt B g’r ‘

(2.6.37)

The powers are in the same ratio as the magnetic to the photon
energy density, and are often comparable. Synchrotron radiation
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is observed much more often because it is usually emitted at ra-
dio frequencies, where detectors are very sensitive. Pgypncn equals
Pcompt produced by scattering the 3 °K background radiation if
B ~ 3 x 107° gauss, a typical interstellar field.

The result (2.6.37) should not be a surprise, because both pro-
cesses involve the scattering of electromagnetic energy by relativistic
electrons. Each process multiplies photon frequencies by a factor
~ 72 in the case of synchrotron radiation the photons are not real,
but are effectively present in the acceleration of the electron gyrat-
ing around the magnetic field. Relativistic Compton scattering also
produces power law photon spectra from power law electron energy
distributions. There is usually little danger of confusing these with
synchrotron power law spectra because Compton scattered radiation
is generally at much higher frequency.

These results for relativistic Compton scattering only apply if
hv'" < ymec? (or, equivalently, ht' < m.c?). If these conditions are
not met, then the relativistic Klein-Nishina formula must be used
for the differential scattering cross-section. Even more important,
simple conservation of energy limits the scattered photon energy to
(v — 1)mec?® + hv, and (2.6.35) no longer holds.
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Chapter 3

Hydrodynamics

3.1 Equations

Most astronomical objects are fluid. In fact, those which are not are
exceptional—portions of the terrestrial planets, various small bodies
in the solar system, interstellar grains, neutron stars, and perhaps
the cores of the oldest white dwarves. Just about everything else the
astronomer deals with is fluid—stars, the interstellar medium, flows
of gas away from stars, onto stars, and between stars, the clouds
which will become stars, and the debris left over after the deaths of
stars. Even the stars themselves may be sometimes regarded as the
particles making up a fluid. The equations of hydrodynamics, sound,
and shocks are discussed in many texts; one of the most elegant is
that by Landau and Lifshitz (1959).

Some of the fluids an astronomer deals with are far from ther-
modynamic equilibrium, and relaxation to equilibrium is very slow;
good examples of this are the relativistic particles in the cosmic rays
and in nonthermal radio sources, and the stars in a galaxy. But in
many cases, particularly for ionized plasmas, local thermodynamic
equilibrium applies. This means that at any point in the fluid it
may be completely described by a single density, velocity, and tem-
perature. The velocity distribution function of the individual parti-
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cles is Maxwellian (if they are nondegenerate), and the distribution
of their ionization and excitation states is described by the Saha
equation. Any processes of excitation, dissociation, ionization, or
chemical reaction are either negligibly slow or so rapid that they
may be assumed to be in equilibrium. Then, for many purposes,
the fact that the particles are charged is inessential, and the ordi-
nary equations of hydrodynamics may be used. We need to remem-
ber that we are dealing with a plasma when considering deviations
from equilibrium—transport processes, acceleration of particles to
high energy, and macroscopic currents and magnetic fields, but often
(particularly at high densities) these effects are insignificant.

The first equation of hydrodynamics is that of continuity, or
the conservation of mass. Stated verbally, the rate at which mass
accumulates in an element of volume is equal to the net rate at which
it flows in through that element’s boundaries. The rate of mass flow
through any unit element of area is pi - 7, where p is the density,
1 is the velocity, and 7 is the unit normal to the surface. Using
vector calculus, the net mass flow from an infinitesimal element of
unit volume is given by V- (pi), and the contained mass is p, so that
the equation of continuity is

% + V- (pil) = 0. (3.1.1)

Although here p is the mass density, this equation is quite gen-
eral; it applies to any conserved scalar quantity. Further, if a quantity
is conserved except for known sources or sinks, a similar equation ap-
plies if these are added to the right hand side. Sources need not be
anything as exotic as matter creation in a steady state cosmology,
but can include gas “created” by the evaporation of a solid, produced
in a chemical reaction, or introduced through a narrow pipe. Finally,
if an equation like (3.1.1) applies to the individual components of a
vector or tensor quantity, another similar equation applies to that

entire quantity.



160 Hydrodynamics

It is useful to consider a total (or convective) derivative, which
measures the change in a quantity per unit time seen by an observer
borne along with the fluid flow. This is defined

D 0

—=—4u-V. 3.1.2

Dr ot " (3.1.2)
The continuity equation may be rewritten

Dp

— -1 = 0. 3.1.3

oy TPV U (3.1.3)

If p is constant the fluid is called incompressible, and V - 4 = 0.
This condition leads to a drastic simplification of the equations of
hydrodynamics, and to a great body of mathematical results, but
to very few astrophysical ones. Changes in density are important in
astrophysics.

The second equation of hydrodynamics is equivalent to F' = ma,
or the conservation of momentum. An element of fluid feels a force
which is given by the difference between the pressures on its surfaces.
For an infinitesimal element the resulting equation is

Dii
Dt

where P is the pressure. Note that the convective derivative which

= VP, (3.1.4)

follows the motion of a fluid element is used—at a fixed point in
space 4 might change because fluid with different velocity is swept
through the point (“is advected by the flow,” in the jargon of fluid
mechanics), so the partial time derivative of % contains contributions
in addition to those of VP. Equation (3.1.4) may be rewritten in
terms of the partial derivatives, using (3.1.2):

ou . ., 1
o (@ V)i = pVP. (3.1.5)

In this form it is called Fuler’s equation. Viscous stresses and gravity
and other body forces may be readily added, if present—they are
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“source terms” for momentum, in analogy with the sources of mass
one might add to the continuity equation. Equation (3.1.5) may be
rewritten, after some manipulation and the use of (3.1.1), in the form

%(pﬁ) + V- (pilii + P) = 0, (3.1.6)
where 4 is a dyad and P is the stress tensor. For inviscid fluids P is
the scalar pressure P multiplied by the unit tensor. Equation (3.1.6)
is written in a form analogous to (3.1.1), so that it is obviously a
conservation law for the momentum density pil; (puii + P) is the
momentum flux density tensor.

There generally is no independent hydrodynamic equation deriv-
able from the conservation of angular momentum. Taking the cross
product of a radius vector with the momentum equation would give
an equation for the conservation of angular momentum, but this
would contain no new information. An exception to this would occur
for a fluid having internal stores of angular momentum other than its
bulk motion (for example, particle spin), in which case there would
be an additional equation relating the internal angular momentum
to the angular momentum of the bulk motion.

The third equation of hydrodynamics is obtained from the con-
servation of energy. The first law of thermodynamics for a fluid

element is DU -
—+P— = 1.
o TP =@ (3.1.7)

where U = £/p is the internal energy per gram, V = 1/p is the
specific volume, and (@ is the external power supplied per gram (the
source term); we now assume a scalar pressure P. @) includes such
effects as thermal conduction, viscous frictional heating, radiation
emission and absorption, and heat produced by chemical or nuclear
reactions. Equation (3.1.7) may be rewritten, after some manipula-
tion and the use of the continuity and momentum equations, in the
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form

9 [5 + 1puz] +V- [ﬂ' (5 + 1puz> + Pﬂ'} = pQ, (3.1.8)
ot 2 2

paralleling equations (3.1.1) and (3.1.6) in explicit conservation form.
It is apparent that £ + pu?/2 is the energy density, and P is the
flux of mechanical work. The momentum and energy equations are
formally identical to (3.1.1), with suitable definitions of the fluxes.
This is as it should be, for they are all based on the conservation of
quantities carried with the moving fluid.

These equations may be rewritten in a coordinate system which
moves with the fluid, so that the independent space variables are re-
placed by masses. These coordinates, called Lagrangian (in contrast
to the Eulerian coordinates of equations (3.1.1,5,6,8), are very use-
ful in numerical computation, because the advective terms u - V are
difficult to compute accurately. Lagrangian coordinates are particu-
larly powerful in “one-dimensional” calculations, in which all ma-
terial quantities depend on a single spatial coordinate. In these
calculations, fluid cells or zones are generally infinitely broad flat
slabs, infinitely long cylinders, or spherical shells. Two- and three-
dimensional Lagrangian meshes (in which quantities depend on two
or three spatial coordinates) are also used, but may tangle when a
fluid flow is heavily sheared.

In Lagrangian coordinates the time derivative is D/Dt, so the
-V terms do not appear explicitly and do not have to be computed.
In one dimensional slab symmetry the spatial variable is the mass,
with dm = pdx. The equations become

2 ou

- -7 .
Dt om’ (3.1.9)
Du oP
D= o (3.1.10)
DU DV
B TP =@ (3.1.11)
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The variables u, V, and U give the velocity, specific volume, and
internal energy (per gram) of a specified fluid or mass element as a
function of time. Eulerian coordinates may be obtained from

t m
s(m, ) = / w(m, ¢') dt’ + z(m, 0) = / V(m',t) dm’ + 2(0, 1).
0 0
(3.1.12)
Similar Lagrangian equations may be obtained for cylindrical
and spherical geometry. Spherical geometry is of most astrophysical
interest. The equations are:

dm = 4nr?pdr (3.1.13)
Z;‘t/ - 8(45;22“) (3.1.14)
% = —471'7'22—:; (3.1.15)
%Z;{ + P% = Q. (3.1.16)

The radius r is obtained from
r(m,t) = /t u(m,t') dt' + r(m,0) = /m V', ) dm' +7(0,t).
0 o  Amr?
(3.1.17)
A striking feature of the equations of hydrodynamics is their
nonlinearity. This is apparent even in (3.1.1) in the product of @ and
p, but is true even for incompressible fluids because of the (@ - V)@
term in (3.1.5). The practical consequence of this is that exact so-
lutions are scarce. The most commonly used tools of the theoret-
ical hydrodynamicist’s trade are linearization of the equations for
infinitesimal disturbances about a static equilibrium, and numerical
computation of the full nonlinear equations.
The alert reader will have noticed that the first equation (3.1.1)
involves two variables, p and #. The number of scalar variables ex-
ceeds the number of equations by the number of spatial dimensions.
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Adding the momentum equation (3.1.4) or (3.1.5) adds another vari-
able P. This is a vector equation, with as many components as
spatial dimensions, so now there is one more scalar variable than
equations. Adding the energy equation (3.1.7) adds still another
variable, U or £ (assuming the source term is known). The excess
of one variable remains. This is reminiscent of the closure prob-
lem encountered in radiation transport theory (1.7) and in kinetic
theory (2.1). Its origin is similar, because in kinetic theory the hy-
drodynamic equations are obtained by taking velocity moments of
the Boltzmann equation (2.1.9).

In order to close the system of equations an additional constraint
is required. This is generally a constitutive relation, or “equation of
state”

P=PE,V). (3.1.18)

The justification for the use of (3.1.18) is the assumption of ther-
modynamic equilibrium. It may be possible to define the variables
P and € in disequilibrium fluids, but only in equilibrium is there a
unique relation among them. This relation is closely analogous to
the Eddington approximation (1.7.12) of radiative transport theory,
which has the form of an equation of state (3.1.18) for the radiation
field. In equilibrium any two of the variables P, £, and V are a com-
plete description of the state of the fluid in its rest frame. Permeable
or dielectric fluids in external fields, and intrinsically anisotropic flu-
ids, require generalizations which are, in principle, straightforward;
such complications are generally irrelevant to the astrophysicist.

To make thermodynamic equilibrium a valid approximation, it
is necessary that the processes which bring it about occur either very
rapidly, or very slowly, compared to the hydrodynamic processes of
interest. A good example is a 100 Hz sound wave in air. Collisional
relaxation between the molecules occurs in ~ 10~9 seconds, and re-
laxation of the populations of most of the important rotational states
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is nearly that rapid, so the instantaneous achievement of equilibrium
thermodynamic properties may be assumed. On the other hand, the
nuclei are far from equilibrium; their lowest energy state is as 5%Fe
nuclei. But nuclear reactions at room temperature are very slow
(> 10'%° years), so the fact that N and 'O nuclei have other,
more energetically favorable, states available may be ignored. Then
thermodynamic equilibrium is well justified. But if the air contains a
molecule whose rotational or vibrational relaxation time is 1072 sec,
then equilibrium is not obtained, and more complex equations than
those of hydrodynamics must be solved. Such intermediate time scale
processes do occur, and produce an observable excess attentuation
of sound in air.

The equations of hydrodynamics have their ultimate derivation
from the more complex “kinetic” equations, which deal with the com-
plete distribution functions of the particle states. In attempting to
solve these kinetic equations one generally takes their velocity mo-
ments, multiplying and integrating them [ d3@ (4@ --- @), where the
n-th moment equation is obtained if there are n factors in the paren-
theses. Each moment gives a new equation, but also an additional
unknown moment of the distribution function. There is always an
excess unknown, as we saw with the equations of hydrodynamics. In
order to close this hierarchy of equations some additional assumption
must be made. The section of this book 1.7 on radiation transport
presents another example. In hydrodynamics the added assumption
(3.1.18) is that of thermodynamic equilibrium. It is essential, and
the term hydrodynamics is often taken implicitly to mean thermody-
namic equilibrium. When similar equations arise there sometimes is
no good way to close the hierarchy, as in the theory of turbulence,

and uncertain approximations and assumptions must be made.
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3.2 Sound Waves and Jeans Instability

Sound waves are one of the most important applications of the equa-
tions of hydrodynamics. In order to derive their properties, consider
a one-dimensional disturbance of small amplitude in an infinite fluid
which is otherwise uniform and at rest. Then we may write

p = po+op(z,t) (3.2.1)
P = Py + 6P(z,1) (3.2.2)
u = ou(z,t). (3.2.3)

Substitute these expressions into egs. (3.1.1) and (3.1.5), and keep
only terms of the first power in small quantities, to obtain a system
of linear equations for small disturbances:

ddp dou

W + 00% =0 (324)
odu 1 96P
—— 4+ ——— = 0. 2.
ot + % oz 0 (3 5)

To eliminate one of the three variables, write

5P = (8_13) 5. (3.2.6)

This relation plays a role analogous to that of the constitutive rela-
tion (3.1.18) in closing the hierarchy of equations. Equation (3.2.6)
may be regarded as a constitutive relation for the changes in pressure
and density a fluid element undergoes in the sound wave, and may
be derived from (3.1.18) if an additional assumption is made—for
example, that processes in the sound wave are adiabatic.

In order to eliminate du from (3.2.4) and (3.2.5) take the partial
derivative with respect to time of (3.2.4) and that with respect to
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space of (3.2.5), and algebraically eliminate the cross-derivative term.
The result is

0%dp oP\ 0%p
— == ) = 2.
ot? (8,0) O0x? (3-2.7)
If we define "
oP
s = a 9 3.2.8
’ ( dp ) (3:28)
the solutions to (3.2.7) are of the form
dp = f(x —cst) + g(z + cst), (3.2.9)

where f and g are arbitrary functions. For a periodic function
dp = dpo exp(ikxr — iwt), (3.2.10)

eq. (3.2.7) leads to
w? = 2k (3.2.11)

Thus ¢ is the phase velocity (and also the group velocity ‘g—‘,‘c’) of

sound waves. (3.2.11) is called the dispersion relation (even though
the waves are not dispersive).

Most commonly, the derivative in (3.2.8) is evaluated at constant
entropy, because the fluid motions in sound waves are usually nearly
adiabatic. Because we are concerned with infinitesimal disturbances,
it is evaluated at the conditions of the undisturbed fluid. Then c; is
called the adiabatic sound speed.

Sound waves are not always adiabatic. For example, for short
wavelength waves in a fluid of high thermal conductivity it may be
a better approximation to evaluate (3.2.8) at constant temperature.
Then ¢, is an isothermal sound speed. For conditions intermediate
between adiabatic and isothermal, sound waves are both dispersive
and damped.

If the fluid satisfies the power law equation of state P o p” for
adiabatic changes, as is frequently a good approximation (for perfect



168 Hydrodynamics

monatomic gases v = 5/3 for nonrelativistic point particles and y =
4/3 if the particles are relativistic; see 1.9), then ¢, = \/fy?/p If,
in addition, P = pNakpT/u, where p is the molecular weight (as is
the case for gases of noninteracting particles), then

[YNakpT
Cs = 7% (3.2.12)

The most important qualitative implication of (3.2.12) is the increase
of ¢; with T'.

For the diatomic molecules in air at room temperature the vi-
brational degrees of freedom are not significantly excited (the first
excited state has an energy corresponding to 3340 °K in Ny and 2230
°K in O3), while the rotational degrees of freedom are excited to such
high quantum numbers that they may be considered classical oscil-
lators (the first excited states are at energies corresponding to 6 °K
and 4 °K respectively). Then there are effectively 5 degrees of free-
dom per molecule, and (3.2.12) with v = 1.40 (1.9.8) is an excellent
approximation to the sound speed in air.

We now consider sound waves in a self-gravitating fluid. To
the momentum equation we must add the force of gravity, which we
express in terms of the gravitational potential ¢:

ou 1

— u-V)i=——VP —V¢. 3.2.13
i+ (@ V)i = —vP Vg (3:2.13)
The potential is given by Poisson’s equation

V2¢ = 4rGp. (3.2.14)

As before, we consider small perturbations about a uniform infinite
fluid at rest.

This procedure is incorrect for a self-gravitating fluid, because
the assumed initial uniform state is not a solution of the equations;
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(3.2.14) cannot be solved for such an infinite fluid without having
¢ — oo and V¢ — oo, implying an infinite gravitational accelera-
tion! In fact, (3.2.13) cannot have a uniform static equilibrium so-
lution even for a finite self-gravitating fluid, because a uniform fluid
possesses no pressure gradient to oppose the acceleration of gravity.
Although technically improper, the calculation is still informative.

For small disturbances dp(x,t), 6P(x,t), du(z,t), and d¢p(x,t),
(3.2.13) and (3.2.14) become

95p 195P 99
P LoD, 009 _

2.1
ot  po Ox or 0 (3.2.15)
8254

(3.2.15) replaces (3.2.5). As before, we assume that all the small
quantities have spatial and temporal variability o« exp(ikz — iwt),
and eliminate dp, 6 P, and d¢ from equations (3.2.4), (3.2.6), (3.2.15)
and (3.2.16). The result (if all the small quantities are nonzero) is
an algebraic dispersion relation:

w? = c2k? — 4wGpy. (3.2.17)

The important property of (3.2.17) is the existence of a critical
wavevector ky and wavelength A\ ;:

ky=+\/4rGpy/cs (3.2.18qa)
Ay =2mes [/ 4AnGpy (3.2.18b)

For k£ > k; the second term on the right hand side of (3.2.17) is
negligible, and it closely approximates (3.2.11); these disturbances
are essentially ordinary sound waves, and self-gravity is unimportant.
For k < kj we have w? < 0, so there are both exponentially growing
(in time) and exponentially damped solutions. The growing solutions
describe Jeans instability. Their growth rate is ~ /4w G py.
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If this derivation had begun from consistent initial conditions,
the Jeans instability criterion would set an upper bound A; on the
size of a stable self-gravitating gas cloud. Because it did not, it is
better to regard Ay as a parameter dividing length scales for which
self-gravity is important from those for which it is not. A cloud of
radius 7 < Ay will, if unconfined, expand under the influence of its
own pressure forces. If it is to survive for a time e r/cs it must
be confined by an external pressure; its self-gravity is inadequate.
This is believed to be a qualitatively correct description of most
interstellar gas clouds, which have » < Ay, and which are believed
to be immersed in a dilute but hot medium with which they are in
pressure balance.

In a cloud of radius » > A; the force of gravity exceeds that of
pressure, and the Jeans analysis predicts gravitational collapse in a
time ~ (4mGpo)~"/2. If such a collapse is followed into the nonlinear
regime, the pressure forces are found (if v > 4/3) to increase more
rapidly that the gravitational forces, and the cloud settles into (or
oscillates around) a state of hydrostatic equilibrium. In this state,
which resembles the hydrostatic equilibrium of a star, » ~ Ay pro-
vided the new, increased, p and c; are used in the calculation of ;.
The frequencies of the low modes of oscillation are ~ /47Gp ~ t; ',
where t5, is the hydrodynamic time scale (1.6.1).

Because of the improper assumptions made in the derivation of
Ay it is best to regard it only as a criterion for the importance of
self-gravity. In objects with r < \; self-gravity is negligible, while in
those with r ~ Ay it is important. For example, an interstellar cloud
which grows to this size will then collapse.

The analysis is more complicated if the fluid has internal motions
in its initial state. Then it is qualitatively correct to replace cs; by a
characteristic fluid velocity v. We may smoothly interpolate between
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the ¢; > v and ¢y < v limits with an expression like

2 42\ /2
47TGPO> ;

Ay =2m ( (3.2.19)

the particular form of the numerator is suggested by the addition of
the hydrodynamic stress pv? to the gas pressure, but is not quanti-
tatively justified. More importantly, the appropriate value of v will
almost always depend on the length scale being considered, because
it is only the differential velocity across a distance r which can pre-
vent collapse (it is always possible to consider the problem in the
center-of-mass frame of the region under consideration).

For a turbulent flow the differential v(r) depends on the statis-
tical properties of the turbulence, and will generally be an increasing
function of r. If the turbulent velocities are subsonic, then v makes
a minor contribution to (3.2.19), whatever its dependence on r. In
supersonic turbulence fluid elements collide and strong shocks form
(3.3), increasing the sound speed so that ¢s; ~ v.

An important case of differential motion is that of rotation, such
as is found in a disc of gas orbiting a central object. Examples include
the interstellar gas orbiting the centers of galaxies, and accretion
discs surrounding stars and collapsed objects. In these cases v =
Qr, where €2 is the local angular velocity of rotation. Substituting
this into (3.2.19), neglecting c¢s, and using Q@ = /GM/R3, where
M and R are the radius and mass of the central object (this holds
approximately even if the mass is distributed in a non-spherically
symmetric way throughout a volume of radius R, as is the mass of
galaxies), we find that r > \; requires

M
po > TR3 (3.2.20)
The numerical coefficient is rather approximate (because it depends
on the boundary conditions on the disturbances, which we have ig-

nored). The qualitative conclusion is that discs much denser than
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the mean density of their enclosed mass may be unstable. Because
cs > 0 it is also necessary that r» > Ay where A; is obtained from
(3.2.18b); to be unstable a rotating cloud must have both a minimum
size and a minimum density.

For the mean interstellar medium near us pg ~ 10724 gm/cm3,
while M/R3 ~ 10723 gm/cm3, so that instability is not expected.
In much denser clouds of sufficient size instability will occur; this
is probably how stars and star clusters begin to form. During their
subsequent collapse angular momentum is conserved, so that v oc r—!
and po o< 7~3; r decreases faster than Ay oc r1/2 (3.2.19), halting the
collapse. Further contraction is limited by the rate at which other
processes (probably magnetic torques) can remove angular momen-
tum from this protocluster or protostar. These processes are incal-
culable, and may be very slow.

Accretion discs are usually (but uncertainly) estimated to have
very little mass and low density, and therefore not to satisfy the
instability criterion (3.2.20).

A closely related problem is the Jeans instability of a gas of
collisionless gravitating particles, such as the stars in a galaxy, or
the denser clouds (which may be protostars) formed by the Jeans
instability in a more dilute gaseous medium. The analysis is more
complicated because the equations of hydrodynamics cannot be used
to describe the motions of collisionless particles, but the instability
criterion is similar, if ¢4 is now taken to be the velocity dispersion of
the particles. The stars in the disc of our Galaxy have pg ~ 10723
gm/cm?, and are thus closer to instability than the gas alone. Be-
cause the particles of a collisionless gas pass by each other freely,
without exchanging momentum or “sticking,” one consequence of
Jeans instability is an increase in their velocity dispersion as du is
added to the pre-existing velocities. It may be that this process main-
tains the velocity dispersion, and limits the density, of the stars in a
galactic disc. It is also possible that spiral arms are a consequence of



Shocks 173

density clumping produced by Jeans instability of the disc, stretched
into a spiral pattern by galactic differential rotation.

In a roughly spherical object, whether collisional (a star), or
collisionless (an elliptical galaxy or star cluster), po ~ M/R3 and c;
(or v) ~ /GM/R, so that R < Az, and there is no instability.

3.3 Shocks

A shock is a propagating irreversible discontinuity in the thermody-
namic state of a body of material. For astrophysical purposes we are
interested only in shocks in fluids, though they can occur in solids.
We will assume that everywhere in the fluid, except in the infinitesi-
mally thin sheet which we call the shock, thermodynamic equilibrium
holds, and the fluid is locally characterized by its velocity, density,
pressure, and internal energy. As discussed in the previous section,
in thermodynamic equilibrium these are a complete description of
the fluid, and an additional constitutive relation makes one of the
variables redundant.

We are interested in finding relations among the parameters of
the unshocked fluid (“ahead” of the shock), those of the shocked fluid
(“behind” the shock), and the velocity of propagation of the shock
itself. These relations, often referred to as the “jump conditions,”
are determined by the conservation laws.

It is not a priori obvious how a shock may actually be produced.
It is even less obvious (and quite a difficult problem to determine)
how unshocked fluid is transformed to its shocked state. The rela-
tions among the parameters of the shocked and unshocked fluid are
only a restatement of the conservation laws, and do not answer these
questions.

Imagine a fluid initially at rest with uniform density py and
pressure Py. At t = 0 we consider a shock propagating in the +z
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Figure 3.1. Shock produced by a piston.

direction from the origin with a velocity U. The gas behind the
shock moves with a velocity u, and has a uniform density p; and
pressure P; throughout its volume. The equations of hydrodynamics
are satisfied everywhere but at the shock front, for everywhere else
0/0t = 0/0x = 0. This configuration (Figure 3.1) may be produced
by a piston beginning to move at ¢ = 0 from the origin with speed
u, so that the shocked gas is at rest with respect to the piston.
Conservation of mass gives the equation

pl(U - ’U,)t = p()Ut, (331)

where the right hand side is the rate of mass flow into the shock
front, and the left hand side is the rate of mass flow out of it. No
mass can accumulate in the infinitesimally thin shock.
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Conservation of momentum gives
p()UtU = (Pl — P())t, (332)

where P; — P, is the pressure jump across the shock. Without spec-
ifying the internal workings of the shock, we can say that matter
can acquire momentum only by the application of a pressure gradi-
ent or pressure drop. Alternatively, we may note that the piston at
the left must apply a pressure P;, balancing the fluid pressure upon
its face, and a hypothetical piston at £ = +o0o must apply a pres-
sure Py. These imply a change in momentum per unit area per unit
time P; — Py, which appears in the momentum matter acquires by
changing its velocity as it crosses the shock.
Conservation of energy gives

1
poUt <Z/I1 — Uy + Euz) = Pyut, (333)

which is the rate at which the piston at the left does work on the
fluid, measured in the laboratory frame. In order to keep the shock
propagating at a constant rate, it is necessary to supply continually
energy and momentum from the outside. If this is not done then
our simple solution, uniform everywhere but at the shock, will be
replaced by a more complex solution in which the shock gradually
weakens.

Now make a Galilean transformation to a frame moving to the
right at a speed U, so that the shock is stationary. In this frame the
unshocked matter has a velocity

Ug = —U, (334)
and the shocked matter has a velocity

up =u—U. (3.3.5)
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Equations (3.3.1)—(3.3.3) may then be rewritten, after a little alge-
bra:

pP1U1 = PolUg (336)
Py + pyul = Py + poud (3.3.7)
P 1 P, 1
U+ — + —ul =Uy+ — + Zud. 3.3.8
1+p1+2u1 0+p0+2uo ( )

These equations bear a striking resemblance to the equations of
hydrodynamics in conservation law form, (3.1.1), (3.1.6), and (3.1.8).
This should be no surprise, because both sets of equations only state
the basic conservation laws. To derive (3.3.6)—(3.3.8) from the hydro-
dynamic equations, integrate each of the latter over a small spatial
region including the shock front, working in the frame in which the
shock is stationary. As the thickness of this region becomes infinites-
imal, [ da:% goes to zero, because 0/0t is finite everywhere. At the
shock 0/0z is a 0-function, but 9/0¢, although not defined, is not
a o-function because no variable exhibits a discontinuous change in
time. (For flows uniform on each side of the shock 0/0t = 0; inte-
grating over an infinitesimal thickness generalizes the conclusion to
flows whose properties vary smoothly away from the shock.) Then
fdx%;m) across the shock reduces to f(x1) — f(xp), and if there
are no o-function sources at the shock the result is f(z1) = f(zo)
for the three functions f of (3.1.1), (3.1.6), and (3.1.8). This gives
(3.3.6)—(3.3.8); to obtain the last of these divide the equation for the
third f by that for the first one.

(From (3.3.6) and (3.3.7) we readily obtain

2 P Pl_PO)
Uy =— | —-1. 3.3.9
0 Po (Pl—Po ( )

This has a simple but interesting interpretation. We know that the
speed of an infinitesimal sound wave in a fluid is \/OP/dp. The ratio
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(P1 — Py)/(p1 — po) is an approximation to dP/dp, and should lie
between the values of 9P/0p for the unshocked and shocked fluid.
The sound speed in the heated, compressed, shocked fluid is larger
than in the unshocked fluid, so we may generally take c? > (P; —
Py)/(p1 — po) > ¢, where ¢ denotes the sound speed. We also have
p1 > po, so that (3.3.9) gives

ug > cp. (3.3.10)

The shock advances into the unshocked fluid at a speed in excess of
its sound speed (supersonically); shocks have Mach numbers greater
than 1.

Elementary algebra (or an interchange of indices in 3.3.9, for the
original equations are symmetric in them) leads to

P, — P,
w2 =" (g> . (3.3.11)
P1 \ P1 — Po

By essentially the same argument as before this leads to
ui < k. (3.3.12)

The shocked matter moves away from the shock at a speed less than
its sound speed (shocks are subsonic with respect to the matter be-
hind them).

Equations (3.3.6)-(3.3.8) are three equations relating the four
“unknowns” p1, ui, P, U; to the “knowns” pg, ug, Py, Up. If there
is an additional constraint, it is possible to solve explicitly for the
unknowns in terms of the knowns. Because we have assumed that
the fluid is in thermodynamic equilibrium on each side of the shock,
we are assured that such an additional constraint exists in the form
of an equation of state, eq. (3.1.18).

Take the perfect gas equation of state

E=——P, (3.3.13)
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where v is a constant. For reversible adiabatic transformations we
showed in 1.9 that such a gas follows the law

P p. (3.3.14)

This is a convenient and often useful law, but we must remember
that shocks are not reversible, and do not follow (3.3.14), even if
the gas satisfies (3.3.13). In this section we use (3.3.13), and only
mention (3.3.14) to remind the reader of the significance of .

The jump conditions give

1
Uy — Uy = = (P + Po)(Vo — V1), (3.3.15)
2

which neatly expresses the change in i/ as a result of the mean “PdV”
work. Using the equation of state (3.3.13) we obtain

P (v+D)Vo—(y— 1)V
Py (v+1O)Vi—(v-1Vy (3:3:160)
i (y-1)Pi+(v+1)F
Vo (Y+DPi+(y-1)P (3:3-160)

Equation (3.3.16) has a striking and important consequence. In the
limit P, /Py — oo we have

% — 1—4& (3.3.17)
No single shock, no matter how strong, can compress matter by a
factor of more than (y + 1)/(y — 1), which is equal to 4 for a simple
monatomic gas with v = 5/3. The pressure and temperature of the
shocked matter may increase without bound, but the density cannot.
The only exception to this rule is obtained if v = 1. This describes an
isothermal gas, for which the temperature is fixed, but whose density
may be increased arbitrarily by a single shock.
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A practical realization of an isothermal gas is one which cools
radiatively, and for which the radiative cooling rate is a very steeply
increasing function of temperature. This is, in fact, often a good
approximation for the interstellar gas, because its cooling depends
on collisional excitation of energy levels with excitation energy x >
kpT. The cooling rate then varies approximately as exp(—x/kgT),
with a very large coefficient. The consequence of this is that strong
shocks in the interstellar medium (such as those produced by super-
nova explosions) produce sheets or shells of very high density, at least
in calculations.

These dense shells may be sites of star formation. This sug-
gestion is controversial, in part because the compression is in one
dimension only. The Jeans length of a flattened cloud is approx-
imately determined by its mean density averaged over a spherical
volume A3; it is easily seen that the flattening to a pancake of a
cloud initially smaller than Aj; will not, by itself, make it gravita-
tionally unstable. The increased confining pressure behind the shock
will contribute to instability. The interstellar medium has a very het-
erogeneous density distribution, so that different parts of the shell
will travel at different speeds, depending on the density of the mate-
rial they encounter. Transverse density gradients will also alter their
direction of motion (refracting the shock). Fragments of the dense
shell may acquire a significant velocity dispersion, which interferes
with gravitational collapse (3.2).

Sonic booms are familiar examples of weak shocks. The pressure
jump P; — P, is orders of magnitude less than P. Writing P, =
Py(1 + ), and taking @ < 1 in (3.3.16) leads to p1 = po(1 + a/7).
Weak shocks therefore satisfy

dln P
dlnp

=7, (3.3.18)

the same equation that applies to infinitesimal sound waves in a
gas with equation of state (3.3.13). By (3.3.9) and (3.3.11), a weak
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shock moves at the sound speed with respect to both the shocked
and unshocked gas, and in all respects resembles a sound wave of
impulsive form. The frequency spectrum is given by the Fourier
transform of its step function pressure profile.

Shocks may be produced in a wide variety of circumstances. The
piston discussed at the beginning of this section is only the simplest
possibility. If a fluid contains a propagating pressure profile resem-
bling Figure 3.2.a, the sound speed will be higher in the adiabatically
compressed and heated matter near the crest of the wave than else-
where. For this reason, and because the nonlinear (@ - V) term has
a similar effect, the peak of the pressure profile will gradually over-
take its leading edge, and its shape will steepen, as shown in Figure
3.2.b. Eventually a shock will form, as shown in Figure 3.2.c. This
qualitative description is confirmed by numerical calculations.

Sound waves of infinitesimal amplitude propagate at constant
speed with a stationary profile. The amplitude of any real distur-
bance is not infinitesimal, so it might be expected to steepen and
form a shock, as sketched in Figure 3.2. This usually does not hap-
pen. The steepening is slow if the amplitude is small. For example,
the sounds of ordinary speech have an intensity of about 75 dB in the
jargon of the acoustic engineer, who defines the intensity of sound as
201og;o(6P/2 x 1071 atmospheres) dB. They would require propa-
gation through a distance D ~ 10° wavelengths to steepen substan-
tially, even if there were no spherical divergence. Unless a sound
wave is initially quite strong, its steepening is usually overwhelmed
by losses resulting from viscosity, heat conduction, and delayed relax-
ation to thermodynamic equilibrium (bulk viscosity). Sound waves
are also significantly attenuated at boundaries between fluid media
and solids, or between two fluids, because there are usually dissipa-
tive heat flows or viscous forces at interfaces.

Sound waves share with shallow water waves the property that
the velocity of propagation increases at the crest of the wave. As a re-
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Figure 3.2. Shock formation.

sult, shallow water waves also show a steepening process qualitatively
resembling that of Figure 3.2. The “shock” is called a hydrodynamic
bore, and is observed on beaches as water runs up them after a wave
breaks, in some tidal estuaries, and in other circumstances where a
large surge of water is suddenly released. The resemblance is only
qualitative, for the dispersion relation for infinitesimal shallow water
waves is dispersive. As a result, there exist stationary nondissipative
propagating structures of finite amplitude, called solitons, in which
the dispersion is balanced by the nonlinearity. Acoustic solitons are
not possible because there is no dispersion to balance their tendency
to steepen into a shock.

We have said nothing about what actually goes on in a shock;
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that is, about the nonequilibrium processes by which the material
is transformed from its equilibrium unshocked state to its equilib-
rium shocked state. Weak shocks may, in some circumstances, be
calculated as if the matter were always close to equilibrium, so that
ordinary coefficients of viscosity and thermal conductivity (whose
derivation assumes small deviations from equilibrium) may be used.
A strong shock is a region of large velocity and thermal gradients,
about a mean free path thick, in which deviations from thermody-
namic equilibrium are large, and the material undergoes an irre-
versible change of state. The hydrodynamic description of a fluid
is not valid there, and the transport coefficients (viscosity and ther-
mal conductivity) are not well defined. To compute the structure of a
strong shock quantitatively requires consideration of the full nonequi-
librium particle distribution function, and is quite difficult. Vari-
ous additional complications are possible, including “collisionless”
plasma shocks, in which dissipation is provided by plasma instabil-
ities (in effect, macro-collisions) rather than by microscopic particle
collisions. Fortunately, for most purposes it is possible to ignore the
detailed structure of the shock itself. The power of the assumption
of thermodynamic equilibrium outside of the shock is that it permits
calculation of all the properties of the fluid from the conservation
laws alone, without any consideration of the way in which the equi-
librium states are achieved.

3.4 Blast Waves

An explosion or other instantaneous point release of energy within
a fluid produces an outward travelling shock. This is called a blast
wave. A full description of the flow is very complex, but if certain
assumptions can be justified a simple theory is both accurate and
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informative. The theory was first developed in order to describe man-
made explosions in air, and is known as the Sedov-Taylor solution,
but also has astrophysical applications, particularly to supernova
explosions in the interstellar medium. Zeldovich and Raizer (1966)
give a thorough discussion with references to the original literature.

We first assume that the fluid medium is uniform and at rest.
This is well justified for most atmospheric explosions (so long as
the radius of the shock is much less than the scale height of the at-
mosphere, and the shock has not touched the ground), but is more
questionable for interstellar explosions. The interstellar medium is
strongly heterogeneous, with its density believed to vary by a fac-
tor of at least ~ 10® between the abundant ordinary clouds and the
hot intercloud medium (rarer dense clouds may be orders of mag-
nitude denser still). It is thus necessary to assume either that an
average may be taken over the heterogeneities (combining high and
low density regions to form an effective mean medium), or that the
presence of the clouds may be ignored (if they do not affect the
flow around them, or if they are sparsely enough distributed that a
typical blast wave does not encounter them). The validity of any
of these assumptions of the interstellar medium has not been estab-
lished. Many interstellar blast waves produced by supernovae (called
supernova remnants) are observed, but tests of the theory are indi-
rect and uncertain because its basic parameters—the age and energy
of the explosion and the density of the medium—are generally not
directly observable or quantitatively known.

This problem is described by several parameters: the energy Y
and mass M of the exploding matter, and the density pg and pressure
Py of the medium. We always assume Y/M > Py/po; if this were not
the case the explosion would never produce a strong shock. Three
regimes may be distinguished on the basis of the radius R of the
spherical blast wave:

In the early regime I, R < (M/po)'/?, and the mass contained
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within the radius R is almost entirely that of the exploding ob-
ject. The surrounding medium has had little influence on its mo-
tion. Supernova remnants typically remain in this regime for the
first ~ 300 — 3000 years of their lives, depending on M, pgy, and
their initial velocity of explosion. The Crab Nebula supernova rem-
nant, the relic of a supernova of the year 1054, is believed to be in
this regime, in large part because for it py and the initial expansion
velocity were unusually low.

In the late regime 1T, R > (Y/Py)'/3. Most of the energy
contained within the blast wave was internal energy of the fluid prior
to the explosion, with Y contributing only a small fraction. The
shock is now weak and propagates at nearly the sound speed.

The middle regime II is the most interesting one; here
(Y/Py)'/3 > R > (M/po)'/3. In this case most of the mass within
the blast wave was that of the fluid medium, but most of the energy
was that of the explosion. If these inequalities hold to high accuracy
then Py and M may be ignored, and the problem is described by
only two parameters, Y and py, which permits great simplification.
We first discuss the early part Ila of this middle regime, in which
radiative losses are negligible, the total energy within the blast wave
is essentially constant (and equal to Y'), and the fluid is described by
an adiabatic exponent v > 1.

All physical quantities are products of powers of mass, length,
and time. If a problem has three intrinsic dimensional parameters of
independent dimensionality (meaning that none is proportional to a
product of powers of the other two; equivalently, the matrix formed
by the powers of mass, length, and time in the three quantities is not
singular), then it is possible to define a characteristic length (or any
other dimensional quantity) as a product of appropriate powers of
the dimensional parameters. The estimates of 1.4 were examples of
this procedure; a characteristic density p, pressure P, and thermal
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energy kpT* were found for a star as a function of its parameters G,
M, and R.

If only two independent dimensional parameters exist then, in
general, no characteristic length or time may be defined (some char-
acteristic dimensional parameters may be formed from the two given
parameters, but in our case not the important ones of length, time,
or velocity). The solutions are of the form

P(r,t) = Po(t) P(r/R(t))
u(r,t) = ui(t)a(r/R(t)) (3.4.1)
p(r,t) = pr(t)p(r/R(t)),

where the quantities P;, u;, and p; are the pressure, velocity, and
density immediately behind the shock, P, @, and p are dimensionless
functions of dimensionless arguments, and R(t) gives the blast wave
radius as a function of time. The form (3.4.1) is called a similarity
solution because the solution at any one time looks like that at any
other time if all lengths are multiplied by a single scale factor; both
solutions have the same shape. Such a solution is possible only if the
intrinsic parameters of the problem define no characteristic lengths
or times, for if they did the solutions when R or ¢ were near these
characteristic lengths or times could be of a different form than those
when R or ¢t were much greater or much less.

Our assumption that there are no dimensional parameters other
than Y and pg requires that the constitutive relations be of the form
(3.3.13) and (3.3.14), because any other form would contain addi-
tional dimensional parameters. Because Py is negligible the strong
shock jump conditions (3.3) may be used to express Pi(t), ui(t),
and pi(t) in terms of the shock velocity; p1(t) is the constant density

* The use of the temperature T in place of kgT is only a redefini-
tion of the temperature scale for the sake of convenience; °K is not
a physical unit independent of energy.
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po(y+1)/(y—1) > 4pg. Because p; > po most of the swept up mass
is concentrated in a dense shell just inside the blast wave.
Equations (3.4.1) may be substituted in the hydrodynamic equa-
tions in spherical geometry in order to obtain ordinary differential
equations for ]3, u, and p. It is more interesting and important to
find the function R(t), and a simple dimensional argument suffices.
If we consider the blast wave at a specific time ¢, this provides a
third dimensional parameter. From Y, pg, and £ we can construct
one quantity with the dimensions of length. Because there are also
no dimensionless parameters (pure numbers) in the problem other
than 7, R(t) must be proportional to this one characteristic length:

v\ '/®
R =& (o) (3.42)
Po
The dimensionless function () is the constant of proportionality,
and is found by integration of the equations for P, 4, and p; it is
fairly close to unity.
;From (3.4.2) we obtain the shock velocity

dR(t) 2 v \'°
— == — . 3.4.3
0 = Zaen (-s) (3.4
The functions Pj(t) and u;(¢) may be obtained from (3.4.3) and the

strong shock jump conditions; on dimensional grounds alone we have

v\ /5 v\ /2
uy(t) ~ d]jl—it) x <%) t73/% <%> R™3/2 (3.4.40)

dR(t)\’
Pi(t) ~ po <%> o Y2/353/5476/5 « YR™®  (3.4.4D)

Equations (3.4.2)—(3.4.4) are used in theories of supernova rem-
nants. Because they are believed to be typically 10,000— 30,000 years
old, their ages and the time-dependence of their properties have not
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been directly observed, and comparisons with the theory are only
statistical. The numerical values of Y and pg are also poorly known,
and perhaps the most important application of this theory is to de-
termine the ratio Y/pp from (3.4.2). Typical values obtained from
statistical analyses are ~ 3x107° cm5 /sec? (Clark and Caswell 1976).
There are at least two distinct types of supernovae and the interstel-
lar po is known to be very heterogeneous, so it is not clear how a
mean Y/pg should be interpreted.

In the early part of regime II, just described, the temperature of
the shocked matter (which is proportional to Py/p; oc t=6/5 oc R=3)
exceeds 10% °K, and radiative cooling is unimportant. However,
the radiative cooling rate of interstellar matter (Spitzer 1978) rises
steeply when T drops below 10° °K.

We now consider regime IIb, in which (Y/P)'/3 > R still holds,
but radiative energy losses are rapid, and the matter may be ap-
proximately described as an isothermal fluid (the adiabatic exponent
v — 1). Now p; — oo, and the swept up mass forms a very thin and
dense shell just behind the blast wave. A simple “snowplow” model
is useful.

Because radiative cooling is effective, the pressure in the low
density region inside the dense shell is very low. Each element of
solid angle of the shell now moves independently of all other ele-
ments, and is slowed as it sweeps up further interstellar material. Its
collision with the interstellar matter is completely inelastic because
of the rapidity of the radiative losses; momentum is conserved but
all the kinetic energy (in the center-of-mass frame of each element) is
radiated. If we enter regime IIb at time ¢y with a shell of radius Ry,
velocity ug, and mass per unit area og = Rgpo/3, its further slowing
is described by

S (@)3 (3.4.50)
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R = (RE+4(t — to)ugR3) ", (3.4.50)

When u calculated from (3.4.5a) becomes comparable to cg, the blast

wave enters the weak shock regime III. This is discussed in Appendix
A.2.

3.5 Accretion

Accretion is the name given the process by which an object increases
its mass by the capture of surrounding matter. We are here con-
cerned with the gravitational capture of gas by stars, and not with
the agglomeration of solid particles (for example, in the early Solar
System), in which surface forces are important. In this section we
consider only the processes by which gravitationally unbound mat-
ter is captured, and not its subsequent flow onto the massive object
which attracted it; these flows are described in 3.6 and 3.7.

Accretion was first investigated by astronomers who were con-
cerned with the possibility that the masses of stars might grow appre-
ciably during their lifetimes by accretion of interstellar material, or
that the potential energy released by infall onto the Sun might affect
the climate of the Earth. The development of a quantitative theory
of accretion and better estimates of the density of the interstellar
medium demonstrated that accretion is almost always insufficient to
produce these effects, although between a protostar forming from a
dense interstellar cloud and a star is a state which may be described
as a rapidly accreting star.

Modern interest in accretion focuses on two distinct problems.
The first concerns stars (including neutron stars and black holes) in
close binaries, which may accrete significant amounts of mass from
their companions. In some cases this mass flows smoothly from one

star to the other, and is always gravitationally bound, but in others
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it must be captured from a high velocity wind (like those discussed
in 1.15); in the latter case the dynamics of accretion resemble that
of accretion from the interstellar medium. Accretion onto collapsed
stars is of interest because a great deal of gravitational potential
energy is released. The second problem concerns peculiar stars, par-
ticularly white dwarves, whose surface composition and spectrum
may be observably affected by the accretion of very small amounts
of interstellar material.

Consider accretion by a star of mass M and radius R moving
at a velocity v through an initially uniform medium of density pg.
Assume

v < \/GM/R, (3.5.1)

as is usually the case, and first take the particles of the medium to be
collisionless. Then each particle follows the hyperbolic path of a free
test particle, unless it actually collides with the stellar surface. It is
simple to calculate the limiting impact parameter by, within which
particles collide with the star and are accreted. Particles with this
impact parameter have orbits just tangent to the stellar surface. Be-
cause of (3.5.1) their orbits are nearly parabolic, and by conservation
of angular momentum we have

biv = V2GMR. (3.5.2)

The accretion rate A is then given by

A = b3 pov
_ 2nGMRpq (3.5.3)
= . )
For a star like the Sun moving at v = 20 km/sec through a

medium with py = 10724 gm/cm® we have A ~ 3 x 107gm/sec ~
5 x 1079 Mg /yr, a negligible value.

The actual accretion rate of a collisional fluid is expected to be
much larger than that given by (3.5.3), and was calculated by Hoyle
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Figure 3.3. Accretion flow.

and Lyttleton (1939). Figure 3.3 shows a flow pattern stationary in
the frame of the star, which is moving to the right. Fluid inside the
nearly parabolic hyperbola AB (actually a hyperboloid of revolution
whose axis is the star’s direction of motion) falls directly onto the
stellar surface, with the accretion rate (3.5.3). Material in paths with
larger impact parameters, like CD and ED, converges on the axis
of motion behind the star and undergoes particle collisions there.
The accretion wake (qualitatively sketched as a cross-hatched area)
contains particles which have collided; if mean free paths are short
this region is sharply bounded by a thin shock.

All the fluid is on hyperbolic orbits about the star until collisions
occur. They contribute to accretion in two ways. Collisions among
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atoms, ions with bound electrons, and molecules are often inelastic,
leaving the collision products in excited states whose energy is usu-
ally promptly radiated, or produce dissociation and ionization; these
processes reduce the particle kinetic energy. When collisions are fre-
quent the matter follows the equations of hydrodynamics. Even if its
total (kinetic plus internal) energy exceeds its gravitational binding
energy, as it did before collisions began, there will be a flow in the
accretion wake towards the attracting star. Matter close to the star
will be in supersonic free-fall (this is an assumed boundary condition,
which is justified if matter radiates and cools rapidly upon impact
with the stellar surface, as is usually the case). No acoustic signal can
propagate supersonically and reach the outer parts of the wake; there
is no pressure support from the stellar surface, and the pressure and
internal energy of the wake do not effectively oppose gravity. This
is very different from a stellar wind, in which subsonically moving
matter near the stellar surface supports and accelerates the outflow.

Roughly, we may say that matter in the wake whose kinetic
energy alone is less than its gravitational energy will be accreted.
The importance of the shock at the surface of the accretion wake
is that it converts a portion of the kinetic energy of the matter to
internal energy, and thus reduces its velocity below escape velocity.

To calculate the accretion rate we need to determine the impact
parameter b for which the matter becomes bound after entering the
accretion wake. On the wake axis the tangential component of veloc-
ity vg is zero (it drops by a large factor at the boundary shock, and
is then reduced to zero by a pressure gradient within the wake). In
order that the lost kinetic energy per unit mass equal that at infinity,
vg of the matter entering the accretion wake must satisfy

1
vy = 5'02. (3.5.4)

DN | =
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The matter follows hyperbolic orbits, which are given by

b*v?/GM
r=——
1+ ecosf

b2v4

and the angle 6 is measured from the point of closest approach. The

(3.5.5a)

where the eccentricity

asymptote is at the angle 6, = cos™!(—1/e), and the point D is at
Op = 0, £ 7, so that cosfp = 1/e. Then the distance rp from D to
the attracting star is

b2v?
By conservation of angular momentum
rpvg = b (3.5.7)
so that at D
2GM (3.5.8)
vy = . .D.
o bv
Now (3.5.4) is satisfied if
2GM
b= R (3.5.9)
implying an accretion rate
A = % pyu
4T G>M? pg (3.5.10)
= T_

This result is larger than (3.5.3) by a factor 2GM/(v2R), which
is ~ 103 for typical stellar parameters. The accretion rate is still neg-
ligible under ordinary interstellar conditions (~ 10715 Mg /yr for the
Sun), but may be significant in other problems. The quadratic depen-
dence of A on M is noteworthy; A is proportionally more important
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for very massive objects (large interstellar clouds, star clusters, and
galaxies) than for ordinary stars.

The apparent divergence of A as v — 0 is also noteworthy. We
have so far assumed that the fluid is initially pressureless and has
zero sound speed. Calculations by Bondi (1952) have shown that
if v = 0 (3.5.10) gives the correct answer, if v is replaced by the
sound speed ¢, and an uncertain (but ~ 1) coefficient is introduced.
A plausible interpolation formula between the v < ¢, and v > ¢,
regimes is

_ AnG?M?pg

A— W- (3-5.11)

Numerical calculations by Hunt (1971) have confirmed this ex-
pression. Perhaps his most important result is the applicability of
(3.5.11) even when there are no radiative losses; this justifies the as-
sertion than only kinetic, and not internal, energy contributes to the
escape of fluid from the gravitational potential well.

For collisionless particles (3.5.3) should still be used; under typ-
ical interstellar conditions neutral atoms and molecules may be con-
sidered collisionless, and their accretion rate is very low. Thus the
ionization state of the fluid determines its accretion rate. Careful
calculations of interstellar accretion must consider photoionization
by the radiation of the accreting object and the quantitative cross-
sections for ion-neutral charge exchange and other collisional pro-
cesses.

If the fluid is heterogeneous the accretion rate will be reduced
below that of (3.5.11), because even a completely inelastic collision
at D (in Figure 3.3) will not reduce vy to zero. Quantitative calcula-
tion requires a detailed description of the density distribution of the
heterogeneous fluid, which is rarely available. The reduction of the
accretion rate is not likely to be more than a factor ~ 2 unless density
contrasts are high, because for b significantly less than that given by
(3.5.9) vy at D substantially exceeds v, and loss of even half of vy
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would leave the matter bound to the attracting object. Only in the
case of small isolated particles moving in vacuum without dissipation
is (3.5.3) correct.

3.6 Accretion Discs

In the preceding section we estimated the rate at which matter may
be gravitationally captured by a star or compact object (degenerate
dwarf, neutron star, or black hole). Its subsequent fate depends on its
angular momentum about the source of gravitational attraction. If it
has no angular momentum then matter will fall radially inward, and
will soon either hit the surface of a star (releasing its gravitational
binding energy as heat), or be swallowed by the event horizon of a
black hole (in which case very little energy may be radiated).

Even a small amount of angular momentum drastically changes
the flow. Matter with angular momentum per unit mass
£ > +v/2GMR cannot fall directly onto the surface of a star of mass
M and radius R. For neutron stars and black holes of comparable
mass the maximum £ ~ 10'® ¢cm?/sec, while for degenerate dwarves
it is & 3x 10'7 ¢cm?/sec. If a neutron star or a degenerate dwarf has a
large magnetic field this may increase its effective size and maximum
£ for direct accretion; this is discussed in 4.2.2.

In the evolution of a binary system one star may expand beyond
its limiting surface, known as the Roche lobe (or Roche limit), within
which its gravity can confine matter. Outside this surface the gravity
of its companion is sufficient to draw matter away from the expanding
star, and toward the companion. This process, known as Roche lobe
overflow, produces a smoothly flowing stream of matter from one
star to the other. The rate of mass flow depends on the rate of
evolution of the expanding star, the ratio of the stellar masses, and

on the rates of angular momentum transfer and other relaxation
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processes within the binary; values over a large range are predicted
(or observationally inferred) in different circumstances. The specific
angular momentum £ of the transferred matter is comparable to that
of the orbital motion, so that £ & 3 x 10'® ¢cm?/sec (depending on the
stellar masses and the size of the orbit).

In accretion from a wind or other extended medium ¢ depends
on the medium’s heterogeneity. For typical interstellar accretion pa-
rameters £ may be as high as £ ~ bvdp/p ~ 10295p/p cm? /sec, where
dp/p is the typical mean density heterogeneity averaged over the
scale of the accretion impact parameter b (but see Livio 1986). In
accretion from the high velocity wind of a binary companion star the
spherical expansion of the wind guarantees a minimum dp/p ~ 2b/D
where D is the separation between the centers of the two stars (there
may be additional sources of heterogeneity); for typical parameters
the previous estimate gives £ ~ 101 cm?/sec. Under some (but not
all) plausible circumstances sufficient angular momentum exists to
prevent immediate accretion by the attracting star. We saw in 3.2
that the collapse of a protostar from an interstellar cloud is similarly
limited by angular momentum.

Accretion discs were first studied for their application to the
early Solar System; the pre-history of their study goes back to
Laplace. Pringle (1981) presents a review with references to the
extensive literature. The fundamental assumption in the theory of
accretion discs is that matter radiates its internal energy much faster
than it loses angular momentum. Examination of the rates of the
many processes involved supports this. In fact, the central mystery
of accretion disc physics is the mechanism by which angular momen-
tum is transferred from one element of mass to another; ordinary
viscous torques are insufficient. The lowest energy state of matter
with given angular momentum is a circular Keplerian orbit; orbits
with the same radius but different orientations collide, the energy
of collision is radiated, and the matter settles into the circular orbit
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determined by its mean angular momentum.

Orbits with different radii need not be coplanar unless they are
coupled by some dissipative process (models for some actual accretion
discs in X-ray sources and SS433 require that they not be coplanar).
Frictional torques are small because they are proportional to the vis-
cosity. Gravitational torques are not dissipative and cannot directly
enforce coplanarity, even if they are large; self-gravitational torques
are small if disc masses are low. Despite these complications, simple
models naturally assume a planar disc; deviations from flatness are
considered as perturbations.

Self-gravity is usually neglected in disc models; this is believed
(on somewhat uncertain grounds) to be justified in accretion discs
arising from mass flows between the components of close binary stars,
or from accretion onto stars and compact objects, but may well be
wrong for protostellar discs. It is also assumed that pressure forces
are small in comparison to the gravitational attraction of the central
mass; this is justified by the assumption that radiation of energy is
rapid. In the almost infinitesimally thin rings of Saturn, composed
of solid particles, this approximation holds extraordinarily well. It is
not empirically known how accurate this approximation is in stellar
accretion discs; it may be incorrect, or at best rough. Finally, we
assume Newtonian gravity; the thorough discussion by Novikov and
Thorne (1972) includes relativistic effects.

The equations of structure of a fluid disc follow from these as-
sumptions. On circular Keplerian orbits the velocity is entirely in
the azimuthal (¢) direction:

vy = /GM/r. (3.6.1)

This is the fundamental approximation of thin disc theory. Because
the disc matter is not exactly at zero temperature and zero pres-
sure the disc will have a finite thickness h in the direction (z) along
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the angular momentum axis. If h < r then the vertical and radial
structure may be considered separately.

There is hydrostatic equilibrium between the z-components of
the pressure gradient and the gravitational acceleration (by assump-
tion, entirely that of the central mass). Expanding the gravitational
force to lowest order in z/r, we obtain

oP GMz
9z~ PTys
This force law is that of a harmonic oscillator. From this we obtain

P 3
hz,/;é’—Mz%, (3.6.3)

where ¢, is the sound speed and €2 is the angular frequency of Ke-

. (3.6.2)

an estimate of h:

plerian orbits about the central mass. Because of the square root
in (3.6.3) h varies as the 1/2 power of the temperature, rather than
being proportional to it, as is familiar from ordinary atmospheres; h
should not be thought of as a scale height, for the density distribu-
tion is closer to Gaussian than exponential. A disc may, in addition,
have a much thinner atmosphere whose scale height is proportional
to its temperature.

Accretion discs are interesting (and observable) only if accretion
actually takes place; that is, if matter flows through them. In order
for matter to flow inward it must lose angular momentum, which
flows outward. The net binding energy per unit mass of matter in
Keplerian circular orbits is —G2M?/(2¢%), so that in the state of
lowest energy nearly all the disc mass has £ — 0 (it accumulates at
zero radius, or on the surface of the attracting body), while all the
angular momentum resides in an infinitesimal fraction of the disc
mass in orbit at » — oco. The problem is to separate the mass from
its angular momentum.

In a steady state in which there is a steady supply of matter with
a finite £ > 0, there is a continual flow of mass inward and of angular
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momentum outward. There must be a torque to extract angular
momentum from the inward flowing mass. This torque is described
as the consequence of a viscous stress, whatever its microscopic origin
(which may be magnetic). The central problem of accretion disc
theory is that it is not known, even to order of magnitude, how
to calculate this stress; ordinary viscosity is certainly present but is
much too small to explain the observed accretion rates. This problem
is evaded by describing the stress by a parameter of unknown value.

The radial structure equations may be written in terms of quan-
tities which are integrals over the vertical structure. The surface
density is defined ¥ = [ pdz, and the mean viscous stress tensor
(trg) = [ try dz/(2h); only the r¢ component is important in a thin
disc. In a steady state disc, conservation of mass may be expressed

—27rv, % = M, (3.6.4)

where M is the mass flow rate and v, the (mass-averaged) mean ra-
dial component of velocity. The conservation of angular momentum
takes the form

MVGMr = (21r) (2h{t,p)7) + J. (3.6.5)

The left hand side is the rate at which mass flow carries angular
momentum inward across a cylinder of radius r. In steady state the
disc inside this radius does not accumulate angular momentum, so
this flow equals the viscous torque the disc inside r exerts on that
outside r plus the rate J at which angular momentum is taken up
by the central attracting mass.

J depends on the boundary conditions at the central object,
which depend on its mass, angular momentum, and magnetic field,
and on the radius r; of the inner edge of the disc. Like other uncer-
tainties, it is readily parametrized:

J=(M\/GMr;. (3.6.6)
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The parameter ( is expected to be in the range 0 < ( < 1; ( <0
would correspond to a rapidly rotating central object supplying an-
gular momentum to the disc; such a process may occur (and may
be necessary to explain the very long spin periods observed for some
neutron stars), but probably only in a disc in which the central object
does not accrete at all, and all matter flows outwards. In most cases
¢ = 1 is probably a fair assumption, equivalent to assuming that
the central object acquires the angular momentum of the accreted
matter along with its mass.
;From (3.6.5) and (3.6.6) we obtain the mean stress

2h’<tr¢> =

MVGMr (1 ¢ %’) . (3.6.7)

272

In order to find the heat released we need the rate-of-strain tensor,
whose r¢ component is given, for Keplerian orbits and v, < vy, by

L(Lov vy vy
2 \r 0¢ or T
3 /GM

o4\ 37

O'qu =

(3.6.8)

The rate of viscous heating per unit volume is given by
€ = —2lp40r4, (3.6.9)

and the total power released per unit area 2H = f edz is

3GMM rr
2H= ———[1— — . 3.6.10
43 ( ¢ r ) ( )

Note that for r; < 7 or ( = 0 (3.6.10) is three times the rate at
which gravitational energy is released by the progression of matter
to more tightly bound orbits; the source of the extra energy is work
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done by the viscous stress. Because a disc has two surfaces, each
element of surface radiates a power per unit area H.

The total disc luminosity L is found, if the disc extends to very
large radii:

L :/ 2H 2mr dr
" : (3.6.11)
3 GMM
(3-) e

Tr

This is the sum of two terms. GMM /(2r;) is the binding energy of
the Keplerian orbit at radius r;, while (1 — ()GMM /r; represents
work done by the central object on the disc. The kinetic energy of
the Keplerian orbit at r; may be dissipated and radiated in a nar-
row boundary layer at the surface of an accreting star, but because
matter in this boundary layer does not satisfy (3.6.1) disc theory is
inapplicable there.

At each point on its surface a disc radiates the flux H. Most of
the energy is released at radii of order but not very close to r;. For
¢ = 1 half is released between r; and 4r;, and an additional 40%
inside 26r;. As a rough approximation we assume the disc surface
radiates as a black body, in which case the disc surface effective

temperature is given by

I\ /4
()
0SB
B 3SGMM ¢ I 1/4
| 8nr3ogp \/ r
1/4

: M\ Y2 oM\t I

~ 107 °K M [ = — 1-— —
510 7\ Mg rc? ¢ r ’
(3.6.12)
where My7 = M /(10'7 gm/sec). For typical X-ray source parameters

most of the power is radiated in soft X-rays (hv ~ 3 KeV). For
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parameters appropriate to the supermassive black holes suggested
for quasars, the disc radiation would appear in the ultraviolet.

If { =1 the term proportional to it has the effect of moving the
peak H and T, to r = %rl; the peak H and T, are respectively .057
and .49 of their values for the case ( = 0. If there is a thin boundary
layer it will have H and 7, much higher than the disc values given
by (3.6.10) and (3.6.12).

In simple disc models the spectrum is given by an integral over
black body spectra, with T, given by (3.6.12). At low frequencies
(hv < kT, where T is an inner disc temperature), a power law is
predicted. Because of the exponential cutoff of a black body spec-
trum, the Planck function (1.7.13) may be very roughly approxi-
mated as < v2T for hv < 3kgT, and zero for hv > kgT. Then the
integrated spectrum I, is estimated, to order of magnitude, by

I, = / B, (T(r))2mr dr
. (3.6.13)
x / v T (r)r dr,
TI
where hv = 3kpT(rpqe) defines rp,4,. For 1,4, > 71 we have
T(r) o< 7=3/4 over most of the range of integration, so that

I, x y2/ /% dr
Tr (3.6.14)

2 .5/4
O'Q Zat et

But 7mas X v~ %3, so that a power law is predicted
I, oc /3. (3.6.15)

Unfortunately, (3.6.12) and (3.6.15) are not supported by any
data. There are few astronomical objects in which the continuum
radiation from an accretion disc can be unambiguously identified.
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One likely case is the black hole candidate Cygnus X-1 (a black hole
has no stellar surface as an alternative source of radiation). Its X-
ray spectrum requires temperatures 10 — 100 times higher than pre-
dicted. The most plausible explanation is that most of the energy
release occurs in very hot optically thin regions, in disagreement with
the assumption of a black body radiator. There is no good way to
predict the properties of these regions, and Cygnus X-1 shows very
different spectra at different times, so that any single model is at
least sometimes wrong. Stars known as dwarf novae have outbursts
in which most of their radiation is believed to come from an accretion
disc. The inferred temperatures are at least approximately consistent
with (3.6.12), but data are not available over a wide enough range
of frequency to test (3.6.15). Because these are transient outbursts,
steady state disc models should be inapplicable.

We were able to evade the question of disc viscosity by obtaining
results parametrized by the accretion rate. M is directly related to L
and other observable quantities, and may be estimated, even though
the orders of magnitude of ¥ and v, are unknown. If assumptions are
made about the viscosity these quantities may be calculated, along
with the detailed structure of the disc; the results are no more certain
than the assumptions. It is usually found that h < r, typically by
one to two orders of magnitude, and that h is nearly proportional to
r in a given disc, except in hot inner regions; these conclusions are
nearly independent of the numerical values assumed for the viscosity
or v,.. They are consistent with the assumption of a thin disc, but
are not confirmed by any observational data. Uncertain arguments
and models of SS433 suggest that in the outer regions of its disc
h/r ~0.5.

It is possible to derive an interesting result for the thickness of a
luminous disc. Begin with the expression (3.6.3) for h, and substitute
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P = P,/(1—p), where 8 = P;/P is taken to be constant:

P. r3
hx,|——————. 3.6.16
p(1 - B) GM ( )
Now use (1.7.19) and (3.6.10):
I7— idPr
kp dz
. (3.6.17)
GMM (. [\ ePr
8mr3 r )" kph’
Substituting this result for P, into (3.6.16) leads to
3cM I
N —— |1 — — . 3.6.18
8mc(l — f) ( ¢ T ) ( )

Define the energetic efficiency of accretion € by L = M c%e, and the
characteristic accretion rate Mg in terms of the Eddington limiting
luminosity Lg (1.11.6):

. L

ME' = i
ey (3.6.19)
 kee

(From (3.6.11)

3 GM

=|-=-—- —. .6.2

€ (2 C) e (3.6.20)

(3.6.18) may be rewritten, if # < 1 (as is found to be the case in the

inner regions of luminous discs)

h~rp <3_32<) (;Z) (1—( %) (3.6.21)
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Then h varies only slowly with ». The maximum value of h/r is
found to be

4 M 9 , , 2
< = — > -
(27C2—18C3> (ME> at r 4C Tr if ¢ > 3

3-3¢C\ ( M B . 2
(3_%) (ME) at r=ry 1f§§§.

These results imply the existence of a characteristic disc accre-

tion rate and radiative luminosity, related to the limiting radiative
luminosity of stars. If M R Mg the inner regions of a disc have
h R r, and thin disc theory is inapplicable. Disc accretion at such a
high rate may qualitatively resemble radial accretion, which depends
on the nature of the central object. The energy released by accre-
tion is trapped as radiation within the accreting matter (3.7). If the
attracting object has a surface, then an extended envelope close to
hydrostatic equilibrium will rapidly accumulate, while in accretion
onto a black hole the radiation is swept into the black hole along with
the matter (Eggum, et al. 1985). Even if M > Mpg, the emergent
luminosity L S L E-

Thin discs and non-rotating stars may be thought of as two op-
posite limits of a continuum. In a star the force of gravity is balanced
by a pressure gradient, while in a thin disc gravity is balanced by
angular momentum. Most astronomical objects, other than those
in which flows are chaotic, may be approximately described by one
limit or the other. For this reason the understanding of discs may
be as important to astrophysics as that of stars.

Intermediate configurations may exist; near the stellar end of the
continuum they may be considered rotationally flattened stars, while
near the thin disc end they are discs thickened by their internal pres-
sure. In a boundary layer between a thin disc and a slowly rotating
star there is a continuous transition between these two limits.
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The theory of discs is in a much more primitive state than that
of stars, because one essential constitutive relation is not understood,
their rate € of viscous heating. This resembles the problem of stellar
structure prior to the development of nuclear physics in the 1930’s.
We may be worse off than this, because so few direct observations
of discs are possible. What little data exist (for example, for discs
around likely black holes like Cygnus X-1) indicates that real discs
are not steady objects radiating from optically thick photospheres (as
the theory assumes), but that they are wildly variable, release much
of their energy in optically thin regions, and may have important
nonthermal processes. It may be appropriate to compare our present
understanding of discs to Galileo’s understanding of sunspots and
solar activity.

3.7 Radial Infall

There are at least three reasons for considering radial accretion flows,
in which matter with negligible angular momentum falls radially onto
a star, compact object, or black hole. In some circumstances matter
with very little angular momentum may be accreted, and infall is
nearly radial. This need not imply that the flow is spherically sym-
metric; for example, flow from the accretion wake shown in Figure
3.3 may be radially inward, but is concentrated onto a small part of
the stellar surface. The second reason is that if the accreting object
has a large magnetic field this field will force the infall of conducting
matter near it to flow along the field lines, and in particular along
those field lines which extend to great distances. In this case the
flow near the star will be nearly radial, and may therefore closely
approximate radial accretion. This is believed to be a good descrip-

tion of accretion onto many magnetized neutron stars and degenerate
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dwarves. The final reason is that radial accretion is a relatively sim-
ple and calculable problem, which stands at the opposite extreme
from that of an angular momentum-dominated accretion disc. Even
were radial accretion never realized, its study would illuminate the
range of accretion flows possible in more complex circumstances.

In free fall from infinity the infall velocity v, is

2GM
Up = — ¢ . (3.7.1)
T

For an accretion rate M the density is

M

where the flow has been assumed uniform over a solid angle 2. In
a spherically symmetric flow €2 = 4x, but in other cases {2 may be
much less. If the flow is guided by a dipole magnetic field the solid
angle is determined by the size of a bundle of field lines. Because
B o 773 the cross-section of such a bundle is o< 73, and Q o 7.

The most important parameter describing radial accretion is M.
If M is small then the accretion luminosity

L= Mc (3.7.3)

is small, the outward force Fj.,4 of radiation pressure on the infalling
matter is negligible, and (3.7.1) and (3.7.2) are applicable. In spher-

ical geometry
Lk

Frog = —
re Amtr2c’

(3.7.4)

where « is the opacity. Properly, x should be frequency-averaged,
but in most accretion flows the opacity is almost entirely frequency-
independent electron scattering, so K may be taken to be k.;. The
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ratio of Fj.,4 to the inward force of gravity is

Frad o LKZ
Foaw AmcGM
9 e (3.7.5)
_ L
=1

where the Eddington luminosity Ly = 4ncGM/k was defined for
stellar interiors in (1.11.6). If L < Lg the influence of radiation
pressure may be ignored. If L > Lg the net force on matter is
directed outward! It is also possible to define the same Eddington
accretion rate Mg = Lg/(c2%¢), where c%¢ is the energy release per
gram, as we did for disc accretion in (3.6.19).

It is clear that Lg is an upper bound on the luminosity emerging
from an accreting object, just as it limits the radiative luminosity of
a star in hydrostatic equilibrium, and the applicability of thin disc
models. It is less obvious what happens if M > Mg; that is, if an
accretion flow “tries” to exceed Lg. For example, an external source
of mass may supply it at a rate exceeding ME. In stellar interiors in
hydrostatic equilibrium luminosities in excess of Lg can be carried
by convection, but this is inapplicable to accretion flows, which are
very far from hydrostatic.

If the accreted matter falls freely until it hits the stellar surface,
the optical depth 7 along a path radially outward from the surface

T:/ Kkp dr
R

B kM
21vV/2GMR’

We have assumed a spherically symmetric inflow. This may be

to infinity is

(3.7.6)

rewritten, using the definition of Mg and the Newtonian value of
e = GM/(Rc?). The result, written in terms of the escape velocity
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Vese = V2GM/R < ¢, is
M\ [2GM1

T = r —

Mg Rc? €

_o( M) e

ME' Vesc

As M approaches Mg the flow becomes optically thick.

(3.7.7)

It is possible to describe crudely the flow of radiative energy
through optically thick matter by a diffusion velocity vq;ff, using

(1.7.15b):
_H
'Udz'ff = 5 .

C

~ o3
3T

(3.7.8)

this result is valid only if 7 R 1. Then we may compare the rate at
which free-falling matter flows inward to the rate at which radiation
diffuses outward through the matter:

. -1

Vesc ME

Before M can reach Mg the matter, optically thick to the radia-
tion, effectively traps it and sweeps it inward, preventing its escape.
Once M R M &, the approximations used in deriving (3.7.9) become
invalid. The radiation trapped deep within the flow builds up to
a higher energy density, and slows the infall. Because radiation is
trapped within the inner part of the flow, in its outer part Fj,q is
smaller than (3.7.4) would imply, and there matter may continue
to accrete; it is not blown away by radiation pressure, as might be
imagined.

In the limit M > M the radiative transport of energy is a small
effect on infall time scales, and the radiation and matter should be
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thought of as inseparable components of a single fluid, with the com-
bined equation of state (1.4.5). When the fluid reaches the stellar
surface a strong shock forms, which reduces its velocity and increases
its density. The compression ratio (3.3.17) is not large, (an isother-
mal equation of state is impossible because it would require efficient
radiative losses, and we have seen that radiation is trapped within
the matter). The accreted matter very rapidly builds up an opaque
and voluminous (but low mass) envelope on the star, nearly in hy-
drostatic equilibrium; the shock marks the outer boundary of the
envelope. The accreting compact object is very soon lost from view
beneath this envelope, which roughly resembles that of a supergiant
star.

As an approximation to the structure of the envelope we assume
that once matter passes through a strong shock at radius r it remains
at r, having converted all its kinetic energy to internal energy; this
ignores its small residual velocity and kinetic energy. Its internal
energy & is given by

GMp

= ] 7.1
£== (3.7.10)

Then, substituting P = (y — 1)€ (1.9) into the equation of hydro-
static equilibrium

oP GMp
= 3.7.11
or r2 ( )
yields the solution
p oc rO=2D/(0=1), (3.7.12)

Under most conditions of interest radiation pressure is dominant
and v = 4/3, so that p oc 772; this is borne out by radiation-
hydrodynamic calculations (Klein, et al. 1980, Burger and Katz
1983).

This result should be compared to the structure of a polytropic
envelope. Substituting P o p? into (3.7.11) yields

pocr~ YO, (3.7.13)
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This is a steeper variation of p with r than (3.7.12), implying that
the envelope structure (3.7.12) is unstable against convection. If it
remains in hydrostatic equilibrium for a long enough time turbulent
convection will make its structure approach that of (3.7.13).

In accretion onto a black hole there is no surface to support an
envelope, and free fall is likely at any accretion rate.

3.8 Jets

A number of diverse astronomical objects contain two oppositely
directed streams of matter flowing outward from a common source,
called jets (Ferrari and Pacholczyk 1983). This phenomenon is found
in quasars and galaxies with active nuclei (Begelman, et al. 1984),
in the peculiar binary star SS433 (Margon 1984, Katz 1986), in the
dense dusty gas clouds surrounding protostars called bipolar nebulae
(Lada 1985), and possibly in other kinds of objects. The degree
of collimation of the jets, the nature of the accelerated material,
its speed, and the symmetry between the two opposed jets all vary
between classes of jets, and to a significant extent within a given
class.

Extragalactic jets range from tightly collimated (~ 1°) filaments
to broad diffuse blobs. They originate in galactic nuclei, and often
terminate in extended lobes of radio emission, the well known “dou-
ble radio sources.” Often one jet is much brighter than the other.
They may be broken into bright knots separated by regions in which
the jet is faint or undetectable. The observed radiation is the syn-
chrotron emission of very energetic electrons in weak magnetic fields,
observed at radio wavelengths (and occasionally at visible wave-
lengths). There is little evidence for thermal plasma in the jets,
although it could be present and even dominate the jet energy flow
without being observable.
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In SS433 the observed jets are composed of singly ionized ther-
mal plasma, with a temperature T ~ 10* °K, radiating in the spectral
lines of hydrogen and helium. This matter is moving at a speed of
78,000 km/sec in jets which are collimated to a few degrees. Aside
from the large Doppler shifts, the spectrum resembles that of ordi-
nary ionized stellar or interstellar material. A very small fraction
of the jet energy is converted to the energy of relativistic electrons,
which produce observable radio jets by synchrotron emission. The
jets of SS433 do not have fixed orientations, but rather trace out the
surface of a cone of half-angle 20° with a period of 164 days. This mo-
tion (which has additional complications) provides important clues
to the nature of SS433 and to the jet acceleration mechanism.

The jets in the bipolar nebulae are usually poorly collimated,
generally resembling diffuse clouds. They consist of molecular gas
with velocities ~ 100 km/sec and temperatures < 100°K. Nonther-
mal phenomena (relativistic particles and synchrotron emission) ap-
pear to be absent.

These phenomena are very diverse, but have in common the ge-
ometry of two opposite jets emanating from a common source. The
origin of this geometry must be very general, for it is found for rela-
tivistic particles, thermal plasmas, and neutral gases, in flows ranging
over several orders of magnitude in size, power, energy density, veloc-
ity, sound speed, temperature, optical depth, particle mean free path
(and almost any other parameter one cares to compute). Angular
momentum has the required symmetry, for it determines a preferred
axis through a center of mass. As discussed in 3.6, angular momen-
tum is expected to dominate the dynamics of matter drawn from a
large volume by a small attracting object, or exchanged between two
stars in a binary system. Matter with a significant amount of angular
momentum naturally forms a disc around the center of gravitational
attraction. Its axis then defines two opposite (but equivalent) pre-
ferred directions, which may be identified with the jet directions.
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Both accretion discs and jets are consequences of the frequent im-
portance of angular momentum in astrophysics, just as objects in
which it is unimportant are spherical.

The symmetry of jet geometry is easy to explain. It is more
difficult to understand the mechanisms of jet production and colli-
mation, and why jets have their observed properties. If a bubble of
buoyant, high entropy fluid is produced within a star or an accretion
disc it will rise to the surface, with its buoyancy force directed par-
allel to the hydrostatic equilibrium pressure gradient and opposite
to the local effective (including the centripetal potential) accelera-
tion of gravity. In a spherical star this force is everywhere radially
outward; in a rotationally flattened star it is preferentially directed
toward the poles; in a thin accretion disc or rotationally flattened gas
cloud it is parallel (or anti-parallel) to the rotational axis. The rise
of such buoyant fluid is analogous to the motions of ordinary stel-
lar convection, but we now consider material whose density is very
much less than, rather than close to, that of its mean surroundings.
Possible examples include a magnetized fluid of relativistic particles
produced by pulsars or other nonthermal processes, or hot thermal
fluid heated by strong shocks. In the course of its rise the buoyant
fluid may mix with or entrain the surrounding denser fluid, a process
which should be described by an (unknown) parameter analogous to
the mixing length of ordinary convection.

Once the buoyant fluid breaches the surface of the disc or gas
cloud it will expand; if its internal energy exceeds the gravitational
binding energy it will escape freely. This flow may be either steady
or intermittent, taking the form of discrete bubbles or persistent
channel flow, depending on whether the supply of fluid is steady or
intermittent, and on values of other hydrodynamic parameters; Nor-
man, et al. (1981) present calculations. The expansion is preferen-
tially normal to the surface (or to surfaces of constant pressure), and
along the angular momentum axis, thus forming jets. Their degree
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of collimation depends on the detailed hydrodynamics of the flow.
This is crudely analogous to the behavior of gas bubbles produced
by underwater explosions, whose breaching can produce prominent
vertical spikes of spray.

The expansion of the escaping buoyant fluid converts its inter-
nal energy to the kinetic energy of bulk motion (a process known
as adiabatic loss of internal energy, because the expansion is usu-
ally taken to be adiabatic). Encounter with a surrounding medium
or magnetic field may re-randomize the particle velocities in a colli-
sional or (more likely, if densities are very low) collisionless shock or
instability, possibly at very great distances from the source.

In an alternative class of models matter is heated or particles are
accelerated at or above the surface of an accretion disc. The hot or
energetic material need not rise through denser fluid. If its internal
energy exceeds the gravitational binding energy it will escape, with
its motion preferentially along the angular momentum axis. The
source of its internal energy may be nonthermal particle accelera-
tion, or a thermal process; Eggum, et al. (1985) report calculations
of thermal jets produced by the radiation pressure of accretion discs
with M > Mpg. The collimation of the jets is determined by the
detailed hydrodynamics of the flow and by the geometry of the ac-
cretion disc; the dense disc provides a boundary condition on the
flow, roughly akin to a rocket nozzle, as well as a source of radiative
acceleration (1.15).

These processes depend on complex, often turbulent, hydrody-
namics with uncertain boundary conditions. In the case of extra-
galactic jets consisting of nonthermal particles the poorly understood
processes of nonthermal particle acceleration are central. It is pos-
sible that all the ingredients of complete models of jets are quali-
tatively known, but turning them into a quantitative predictive (or
even explanatory) tool remains a difficult problem.

After a jet leaves the vicinity of its source it will interact with
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any surrounding medium. This interaction may be complex; in par-
ticular, nonthermal processes may accelerate or scatter energetic elec-
trons which produce radio (and occasionally visible) synchrotron ra-
diation. A very rough model based only on momentum balance is
capable of describing the rate at which a jet carves a cavity in the
medium, and therefore relates the apparent length of a jet to the pe-
riod over which it has been produced and to the physical parameters
of the jet and of the medium in which it propagates.

The flow is sketched in Figure 3.4. A collimated jet of density
p1 travelling at speed u enters a semi-infinite medium at rest. The
collision between the jet and the medium slows and deflects the jet,
and pushes the medium aside; the jet creates for itself a cavity. At
the tip of the jet fresh material interacts with the medium. This
interaction region I moves to the right at a speed U. It is possible to
calculate U without considering the complex hydrodynamics of the
interaction region.

In a frame moving with I the flow is stationary, at least when
averaged over any turbulence which may be present. The jet im-
pinges on I from the left at a speed (assuming all velocities to be
nonrelativistic) u — U, and the medium flows towards I from the
right at a speed U. Because there are no other sources of momentum
and I contains negligible mass (and is not accelerated), these two

momentum fluxes balance
p1(u—U)? = pU (3.8.1)

Simple algebra gives U:

Uv=— " (3.8.2)

1+ /p2/p1

In a time ¢ the jet penetrates to a depth D = Ut. Equation (3.8.2)
has been verified empirically for nearly incompressible fluid flow, if
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Figure 3.4. Jet propagation.

there is little entrainment of the medium by the jet before it reaches
I. In this case the description of the complex flow pattern at I by
a simple equation of momentum balance appears to be valid. Real
astrophysical jets are much more complex, and the validity of this
simple model of their hydrodynamics is uncertain. For example,
because the flow is supersonic strong shocks form, and will tend
both to disrupt the jet before it reaches region I and to evacuate the
medium.

This calculation is readily generalized to relativistic velocities.
The results are not so simple, except in limiting cases. Define p;
to be the jet’s rest mass density measured in the laboratory frame.
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/pl/p22’ P 1
U= l-u P2 (3.8.3)

u, if&>>1—u2.
P2

Each of these limits may be interpreted as a consequence of momen-

Then

tum balance.

3.9 Magnetohydrodynamics

3.9.1 Equations If a fluid is an electrical conductor, as is most of
the matter dealt with in astronomy, currents may flow in it and pro-
duce magnetic fields. These fields exert forces on the fluid through
the currents it carries. Magnetic fields are observed in many as-
tronomical objects. Even when they are not observed they may be
present with magnitudes too small to permit direct observation, but
large enough to produce other interesting consequences. For exam-
ple, magnetic fields may carry significant torques (3.6), and time-
dependent fields may lead to the acceleration of energetic particles
(2.5).

The generalization of the laws of hydrodynamics to a conducting
fluid is called magnetohydrodynamics. In each case the fluid equa-
tions are derived from kinetic equations (2.1) by assuming that the
particle distribution functions are very close to those of thermody-
namic equilibrium. It there are at least two species of particles with
opposite signs of charge, the mean charge density is nearly zero,
displacement currents are neglected, and the equations of electro-
dynamics are used to calculate the electromagnetic fields and the
forces on the charged particles, then the equations of magnetohydro-
dynamics are obtained. The neglect of the displacement current and
of the net charge density mean that the high frequency phenomena
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of electrostatic plasma waves and transverse electromagnetic waves
are excluded.

The equations of magnetohydrodynamics are inapplicable if par-
ticle mean free paths and relaxation times are long, as is generally
the case for energetic particles in low density media, because then the
assumption of thermodynamic equilibrium (the complete description
of the fluid by its pressure, density, velocity, and magnetic field, all
of which are functions of space and time) fails. Even when strictly
inapplicable, the magnetohydrodynamic equations may be a useful
qualitative description of the fluid, although they will not describe
some real phenomena. They may be a much better description of
a magnetized (but nonequilibrium) fluid than the equations of hy-
drodynamics are of a similar unmagnetized fluid, for the gyration
of energetic charged particles around the magnetic field lines may
in effect shorten their mean free path to their gyroradius, which is
generally very small.

Following Jackson (1975), the equation of conservation of mass
is (3.1.1):

op + V. (pi) = 0. (3.9.1)
ot
The equation of momentum conservation is essentially the same as
(3.1.5), but we write the magnetic (Lorentz) force explicitly:
g—?+(ﬂ-vw:—%vp+ J:cBJr%, (3.9.2)

where F describes any other body forces, such as gravity and viscous
stress. Neglecting the charge density and the displacement current,
the electromagnetic field equations become

. 10B

E=--2" 9.
V x e (3.9.3)
vxB=2g (3.9.4)
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(3.9.5)

V-
V- . (3.9.6)

oo
Il

0
0

In addition to the relation (3.1.18) which determines the pres-
sure P, another constitutive relation is needed to determine the
current density J. The simplest possible relation is the elementary
Ohm’s law, which ignores the Hall effect and a variety of other ther-
momagnetic and galvanomagnetic phenomena. In the rest frame of
an element of fluid this law takes the form

J =oE (3.9.7)

where the primes denote the fluid frame, and o is a scalar conductiv-
ity. Because we are neglecting charge densities, and assuming that
all velocities are nonrelativistic, the current density in any frame
J = J'. The electric field E’ may be expressed in terms of the fields
E and B in an inertial reference frame, so that

=

J=0(E+ = x B). (3.9.8)

oy

In real astronomical problems the validity of (3.9.7) and (3.9.8)
may be questionable because they do not correctly describe the re-
sponse of collisionless particles to applied fields. They are valid only
in the limit in which particle distribution functions undergo rapid
collisional relaxation. There is no simple remedy for this problem,
and it is likely to be serious whenever the fluid contains energetic
particles.

In good conductors the electric fields are very small, and usually
not directly measurable. They are still important, because without
them no current would flow and there would be no magnetic field. It
is usually of more interest to examine the behavior of the magnetic
field, which is often large and measurable, using equations in which
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the electric field does not appear explicitly. The electric field may be
eliminated from (3.9.3) by use of (3.9.8), yielding

— =Vx(uUxB)— -V x.J. 3.9.9

o =V (@xB)-° (3.9.9)
The current density is also hard to measure directly, but may be
eliminated by taking the curl of (3.9.4), using an elementary vector
identity, and substituting into (3.9.9):

o8 2

9r _ ix B+ S v2B
5, =V x (@xB)+ VB (3.9.10)

3.9.2 Resistive Decay  If the fluid is everywhere at rest (& = 0) then
(3.9.10) becomes a diffusion equation, and the magnetic field grad-

ually decays to a uniform value. This value is set by the boundary
conditions, and is generally zero for an isolated object. The mag-
netic energy appears as resistive heating of the matter. In a body or
region of size R the characteristic decay time ¢,,4 is approximately

4o R?
bma ~ — 5 (3.9.11)
For an ionized nondegenerate hydrogen plasma
1.4 x 108 T3/2
o~ sec™ !, (3.9.12)

In A
where In A is the Coulomb logarithm (2.2.10) (Spitzer 1962).

For ordinary (dwarf) stars and for degenerate dwarves t,,q4 is
typically in the range 10% — 101° years. The value of t,,4 for neutron
stars depends on their complex internal structure, but is probably
also very long. Because o is essentially independent of density in
nondegenerate ionized matter, ¢,,q is much larger than the age of
the universe for very large objects, such as the interstellar medium.
Resistive decay of magnetic fields is a slow process for objects of

astronomical dimensions.
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3.9.3 Dynamos If the fluid is in motion then the first term on
the right hand side of (3.9.10) becomes important. In a prescribed
steady velocity field this equation is linear in E, and its solutions will
therefore be eigenmodes which either grow or decay exponentially as
functions of time. The decay found when @ = 0 is a special case of
this behavior. A variety of simple flow patterns may be shown to
lead only to decay, but more complex flows may produce exponential
growth. This growth is called the dynamo mechanism of magnetic
field amplification.

In most real astronomical objects, such as stellar convection
zones or the interstellar medium, the flow field is unsteady and tur-
bulent. Such flows are expected to lead to magnetic field amplifica-
tion by a dynamo process, although it is hard to make a confident
prediction for such a complex problem. The characteristic dynamo
amplification time t;, may be as short as

R

tdga ~ —, 3.9.13
da ™ ( )

which will generally be very much less than the age of an astronom-
ical object. If it were proper to speak of eigenmodes of B when
v is a fluctuating quantity, the exponential growth of even a single
eigenmode would soon lead to very large B.

Once the magnetic stress, of magnitude B?/8m, becomes com-
parable to the hydrodynamic stress pu?, it is likely that it will alter
the flow pattern so that exponential amplification of the magnetic
field will cease. This is necessary on energetic grounds, because the
fluid motion will then no longer possess enough energy to amplify
the field rapidly. It is often assumed that in a turbulent conducting
fluid the field will be amplified until this condition is met, so that
the field may be estimated

B2

— ~ pu’. (3.9.14)
8
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The best observed turbulent conducting flow is probably that of
the Solar convective zone. The magnetic field there reaches the values
implied by (3.9.14) in sunspots, where it also apparently suppresses
the convective motion, in agreement with expectation. Elsewhere on
the visible Solar surface the field is much less, in disagreement with
(3.9.14). The nondegenerate stars with the largest surface magnetic
fields appear to be those whose surfaces are only slightly unstable
against convection, or are weakly stable, while an argument based
on (3.9.14) would suggest that stars with the most vigorous surface
convection should have the strongest fields. In contrast, (3.9.14) ap-
pears to approximately describe the magnitude of interstellar fields.
The only simple summary is that the real world is not simple, and
that this estimate should be used with great skepticism.

3.9.4 Seed Fields Exponential growth by a dynamo process is al-
most, but not quite, a complete solution to the problem of the origins
ot magnetic fields in astrophysics. There must still be a seed field to
be amplified, although its magnitude may be extremely small. There
are a number of ways in which such a seed field may be produced. It
is a general property of pressure gradients in ionized gases that they
produce small charge densities and electric fields. To demonstrate
this, consider the separate equations of hydrostatic equilibrium for
electrons and ions in a uniform gravitational field g, or subjected to
a uniform acceleration —g':

VPZ' = n,m,ﬁ-l— niqiﬁj + F; (39150,)
VP. = nemef + neqoF + F.. (3.9.15b)
The subscripts 7 and e refer to the ions and electrons, ¢, n, and

m are respectively the charge, number density, and mass of each
species, and Fis any force other than gravity, inertia, or that of the
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electrostatic field. The only such force which needs to be considered
is the frictional force resulting from collisions between the ions and
the electrons. In equilibrium there is no net drift velocity of the two
species with respect to each other, so there is no mean frictional force
between them, and F; = ﬁe = 0.

Addition of (3.9.15a) and (3.9.15b) gives

—

VP = (nym; +neme)g + (niq; + neqe) E, (3.9.16)

where P = P, + P, is the total pressure. If the gas is nearly
electrostatically neutral, as will almost always be the case, then
niq; + neqe = 0 to an excellent approximation. The density
p = n;m; + neme, so that (3.9.16) becomes the ordinary equation
of hydrostatic equilibrium (1.3.1):

VP = pj. (3.9.17)
Subtraction of (3.9.15b) from (3.9.15a) gives
V(P; — P.) = (nim; — neme)§ + (nig; — nege) E.- (3.9.18)

Assume a nondegenerate perfect gas equation of state for each
species, which in equilibrium are at the same temperature 7. If
we neglect m,. compared to m;, the coefficient of g is almost exactly
p. Then the electric field is given by

VI(ni —ne)kpT] — pg.

Niq; — Nege

E =

(3.9.19)

For the special case of a pure hydrogen plasma n;, = n. = n/2, ¢; = e,
ge = —e, and p = n;m; (neglecting me), so that

m;g

E=-——"2
2e

(3.9.20)
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The electrostatic potential energy of an ion is then —% of its gravita-
tional potential energy. At the surface of the Sun E ~ 108 Volt/cm,
an extremely small field. These fields are found in all gravitating or
accelerated plasmas.

The physical origin of this electric field is clear. Nearly all the
gravitational force acts on the massive ions, but the electrons con-
tribute substantially to the pressure gradient which opposes it. In
order to keep the electrons from being accelerated to infinity by the
pressure gradient, a small electric field develops, which confines the
electrons, and helps support the ions against gravity. Temperature
gradients also produce small thermoelectric fields.

If the matter is moving (nonrelativistically) with respect to an
observer, that observer will see a magnetic field

—

B=-YxE (3.9.21)
C

These fields are very small (~ 10727 gauss for representative inter-
stellar parameters, and ~ 10~!° gauss for the Solar convective zone),
but fewer than 50 e-foldings of dynamo amplification will bring them
to the observed values.

3.9.5 Field Lines If a fluid is a good conductor (¢ — oc) then
(3.9.10) becomes

B L
88_15 =V x (4 x B). (3.9.22)

The rate of change of magnetic flux ® through a fixed loop C' bound-

ing a surface S may then be found by integration
0 0
ot ot Jg

= /[V x (@& x B)] - i da (3.9.23)
S

(
_/C(ﬁxB‘)-dz,

B-# da
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where 7 represents a unit vector normal to S, da is an element of
surface S, dl is an element of loop C, and where Stokes’ theorem has
been used. If the field lines are considered to move with the fluid
as if they were frozen into it, then (i x E) -dl is the rate at which
magnetic flux normal to dl and to @ is advected across the element
dl by the flow. The equality (3.9.23) establishes that the rate of
advection of flux across C' equals the rate of change of flux through
S, so that this picture of magnetic field lines frozen into the fluid
is a valid description of the behavior of the magnetic flux in a good
conductor.

The concept of frozen magnetic flux is a useful tool. Matter can
still bend magnetic field lines (because surface currents flow when it
encounters a field, and these currents add to the pre-existing field),
even though it does not cross them. If the material stress P + pu?
is small compared to the magnetic stress B?/8w, even this bending
will be slight, and the field will act nearly as an immovable obstacle,
confining and guiding the flow of matter.

In the opposite case P + pu? > B?/8m, the field lines will be
swept along passively with the flow of conducting fluid. This prob-
ably describes the behavior of the field in the evolution of stellar
interiors. The conservation of flux within a loop implies that if all
linear scales contract by a factor R, so that p oc R3, then the area
of a loop varies o« R~2 and the magnetic field B o« R?  p?/3. The

4/3 as is expected for a relativistic fluid

magnetic stress B2?/8m « p
(1.9). This scaling of B may account for the large magnetic fields
of neutron stars and degenerate dwarves, although if it is applied to
the contraction of stars from interstellar material it predicts impos-
sibly large fields. It is possible that strong fields which violate the
condition P + pu? > B?/87 channel the contraction parallel to E,
or prevent contraction until they are reduced by resistive loss or a

suitable (anti-dynamo) flow field.
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Chapter 4

High Energy Phenomena

4.1 Accreting Degenerate Dwarves

Degenerate dwarves lie at the border between high energy astro-
physics and more conventional astronomy. I have outlined their the-
ory in 1.12; Shapiro and Teukolsky (1983) give a much more thor-
ough account. There exists a great body of observational data con-
cerning degenerate dwarves, most of which has been obtained with
the methods of visible light astronomy. A great deal is known about
their spectra and surface chemical composition, magnetic fields, ro-
tation, distribution and motions in space, membership in binary sys-
tems, and other conventional astronomical properties.

Disappointingly little is known of the masses and radii of de-
generate dwarves. Stellar masses are generally measured from their
orbital motions when members of a binary system. For very few de-
generate dwarves do data of sufficient completeness and quality exist.
The measurement of stellar radii requires either an accurate theory
of the emission from stellar atmospheres, or detailed eclipse data.
The former is questionable and the latter very rare for degenerate
dwarves.

Degenerate dwarf masses and radii are needed for a direct test
of the theory of their interiors, but because this theory is grounded

227
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on elementary quantum statistics it is probably fair to accept it
untested. The absence of these basic data is more serious for the
astronomer who is attempting to model quantitatively their observ-
able properties, for whom these are basic parameters.

Some phenomena involving accreting degenerate dwarves may
reasonably (if somewhat arbitrarily) be described as belonging to
high energy astrophysics. These are the accretion process itself, the
problems of their spin and fields, and the dramatic outbursts known
as novae. As discussed in 3.5, accretion from the interstellar medium
is generally insignificant, so we are here concerned with degenerate
dwarves in binary systems.

4.1.1 Accretion When a degenerate dwarf star is a member of a bi-
nary stellar system, and its companion is a nondegenerate star, mass
may flow from the companion onto the degenerate dwarf. Cérdova
and Mason (1983) present a review, and are particularly concerned
with the radiation produced by the accretion process itself. The rate
of mass flow depends sensitively on the size and evolutionary state
of the nondegenerate star and on the separation between the two
stars. The most frequently discussed accretion rates are in the range
10710 — 108 My /yr, or 106 — 10*® gm/sec. Much smaller rates
certainly occur when the stars are well separated, but are of little
interest; larger rates probably occur but are believed rare. Accret-
ing degenerate dwarves in binary systems were first recognized as
variable stars, because accretion flows, whether discs (3.6) or more
nearly radial (3.7), are apparently almost always unsteady, and pro-
duce radiation whose intensity varies irregularly on a wide range of
time scales. Orbital eclipses and rotation of the accreting star may
also lead to periodic variability. In addition, some of these objects
are observed to undergo dramatic outbursts known as novae (4.1.2);
it is likely that they all will eventually (and repetitively) do so.
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Accretion onto degenerate dwarves is observationally interesting
because it releases a significant amount of energy. The gravitational
binding energy of a gram of matter added to the surface is

R

M\ 2
~ 2 x 107 (—) erg/gm.
Mo

(4.1.1)

The numerical expression is a fair approximation for the mass range
0.4Mg & M X 1.2Mg, which includes the few measured degenerate
dwarf masses. It is generally assumed that most of their masses lie in
this range. The problem of mass measurement is particularly treach-
erous for the most interesting degenerate dwarves, those accreting
from binary companions, because emission by the flowing matter
confuses the spectroscopic measurement of the orbital Doppler shifts
on which mass measurements are based. Measurements of the masses
of these stars are generally indirect and controversial. A representa-
tive estimate of their mean mass is M =~ 0.7Mg, so I will henceforth
use ec? = 10'7 erg/gm, or € ~ 10~%. Typical accretional luminosities
are then in the range 103 — 103° erg/sec.

Matter accreted from a binary companion star will often (per-
haps almost always) form an accretion disc (3.6). Such a disc is
expected to form when matter is accreted as a consequence of Roche
lobe overflow, and carries with it the large angular momentum of
the orbital motion. The cataclysmic variables, a category including
novae, dwarf novae, and nova-like variables, are likely examples.

Mass captured from a stellar wind may not form a disc. Sig-
nificant winds (1.15) are produced by luminous stars, whose visible
radiation will generally overwhelm that produced by a degenerate
dwarf. Degenerate dwarves accreting from the wind of a binary com-
panion may therefore be hard to recognize on the basis of their visible
radiation alone, and may only infrequently appear in catalogues of
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variable stars. The symbiotic stars have been suggested to be exam-
ples of this class of objects.

Application of the theory of accretion discs predicts surface ef-
fective temperatures (3.6.12)

. 1/4
2
T, ~ ( Mec ) . (4.1.2)

O'SBR2

This ranges up to ~ 10° °K, and the emitted spectrum peaks in
the far ultraviolet, with some radiation extending to the soft X-ray
(hv ~ 100 eV) band. Observations in this frequency range are dif-
ficult because absorption by photoionization of interstellar matter is
large (and depends on the distance of the star and the intervening
neutral hydrogen density, both of which are generally poorly known).
There may also be significant energy released at the boundary be-
tween the disc and the degenerate star, where the temperature may
be significantly higher; just how much higher depends on the detailed
mechanism of viscous energy release in the boundary layer. Obser-
vations show complex variability. The observed energy distributions
are in some respects consistent with disc theory, but it alone cannot
explain many of the finer details of the data.

If the accreting degenerate star has a significant surface mag-
netic field (see 4.2.5; B R 104 gauss is probably sufficient), it will
disrupt the rotation of an accretion disc near the surface. At least
a few, and possibly most, accreting degenerate dwarves have fields
this large (a few have much larger fields); fields near the minimum
required are hard to detect spectroscopically. Matter deflected or
guided by the field falls onto the stellar surface with a velocity

v =4/ WTM, (4.1.3)

where 7 lies between 1 (the Keplerian orbital velocity) and 2 (the
free-fall velocity from infinity, which will be applicable if the matter
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falls freely along the magnetic field lines from a height > R). From
(4.1.1) v is found to be ~ 3 x 10® c¢m/sec.

Virtually all the kinetic energy of the infalling matter is carried
by its ions. Upon entering the stellar atmosphere they are rapidly
slowed by Coulomb drag; the proton stopping length is found from
(2.2.12) to be 4 x 10*° n* cm™?, where n, is the density of the
protons which slow them. The stopping length is nearly the same for
protons and *He nuclei, which together carry ~ 97% of the mass and
energy. Slowing by electrons is negligible because they are heated so
that their thermal velocity far exceeds v, and (2.2.14) is inapplicable.

The stopping length is very short; it is always much less than ab-
sorption lengths for photons (outside absorption lines), and is much
less than R whenever the rate of accretion is high enough to be of
interest. In the limit in which it is zero the slowing of the infalling
matter may be regarded as being accomplished by a shock (3.3; the
thickness of a shock is the thickness required for the particle dis-
tribution function to relax to thermal equilibrium). A layer of hot,
radiating, shocked matter accumulates between the stellar surface
and the accretion flow. Its upper boundary is the accretion shock
and its lower boundary is the cooler stellar atmosphere, into which
it flows subsonically.

;From (3.3.11) and (3.3.17), making the reasonable assumption
that the temperature and pressure of the unshocked matter are neg-
ligible compared to those of the shocked matter, and taking v = 5/3,
we obtain the temperature of the matter immediately behind the
shock

_ 3,umpv2
* 16 kp

(4.1.4)

where p is the molecular weight (1 = 0.6 for ordinary stellar compo-
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sition). Then (4.1.3) gives
_ 3 numy GM
° 16 kg R
M2
~3x10%( — ) 7 °K.
- (MQ) !
Radiation by such hot matter is (usually) largely bremsstrahlung

(4.1.5)

(2.6.1); most of the radiated energy is in hard X-rays with energies
of tens of KeV, and the shape of the spectrum may (in principle) be
used to determine M.

There are a number of complicating effects. If there is a magnetic
field with B R 107 gauss, matter at the temperatures indicated by
(4.1.5) will rapidly radiate cyclotron harmonic radiation (2.6.2) at
visible and ultraviolet wavelengths. This process may be important
because the radiated intensity at these wavelengths may approach
that of a Planck function at the high temperature given by (4.1.5).
Elliptically polarized radiation which is probably cyclotron harmonic
emission has been observed from a few strongly magnetized accreting
degenerate dwarves. Very hot electrons will also be rapidly cooled
(2.3.33) by the Compton scattering of lower energy photons emitted
by the stellar surface. Both these processes reduce the energy avail-
able to be radiated as hard X-rays, and increase the power at much
longer wavelengths.

Hard (multi-KeV) X-rays have been observed from numerous
accreting degenerate dwarves, including many for which there was
no other reason to expect radial infall and shock-heated matter. It is
unclear whether magnetic fields sufficient to disrupt disc flow, but too
small to observe spectroscopically or polarimetrically, exist in most
degenerate dwarves, or whether shocks and high temperatures have
another origin. The data are qualitatively consistent with (4.1.5),
but it has not been tested in detail.

An interesting question is why accretion flows are usually un-
steady. There are two classes of explanations, roughly corresponding
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to the two classes of turbulence discussed in 1.1. It is frequently
found in hydrodynamics that initially smooth flows are unstable,
with small disturbances growing exponentially. Alternatively, accre-
tion may sample a small portion of a much larger and nonuniform
flow, and thus be sensitive to local variations in its properties, only
whose averages would otherwise be observed. Binary star accretion,
whether Roche lobe overflow or from a wind, draws upon the upper
atmosphere of the mass-losing star, which is expected to be hetero-
geneous; the nonuniformity of the Solar atmosphere and corona are
known to grow rapidly with height.

4.1.2 Spin and Fields The spin and magnetic field of an accreting

object affect and may be determined by accretion. The estimates of
4.2.2 may be applied to degenerate dwarves. Their magnetic fields
range from undetectably small values (in a few cases upper bounds
are less than 10* gauss) to ~ 108 gauss (Angel 1978). Perhaps 10% of
degenerate dwarves are observed to be strongly magnetic, with sur-
face fields ~ 10 — 108 gauss. It is plausible that degenerate dwarves
inherit (and compress) the magnetic flux of their nondegenerate pro-
genitors. The origin of this flux is also not understood in detail, but
may be related to the presence or absence of surface convection when
on the main sequence.

Little is known about the rotation of nonmagnetic degenerate
dwarves, because its only readily observable effect is the Doppler
broadening of the spectral lines. The lines are also widened by pres-
sure broadening, which increases with surface gravity, so these mea-
surements are not sensitive; lower bounds to rotational periods of
tens of minutes exist for a few single stars. In a binary system these
measurements would be confused by the spectrum of the companion
star.
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A magnetic field may make rotation readily observable, by mak-
ing the radiation spectrum, intensity, or polarization vary across the
stellar surface. This is a very large effect when the field guides accre-
tion flow. Single magnetic degenerate dwarves have observed periods
ranging from ~ 1 hour to ~ 1 day. In a few cases a period of a cen-
tury or more has been inferred from the constancy of their radiation,
but this argument cannot be conclusive, because if the field is inde-
pendent of azimuthal angle about the rotation axis (for example, a
magnetic dipole aligned with the angular momentum) there will be
no rotational modulation of the radiation. Even a period of a day
corresponds to a specific angular momentum £ ~ 103 c¢m?/sec, a
very low value. The likely explanation is that during the red giant
phase of the progenitor star’s evolution it rotated roughly as a rigid
body; the internal magnetic field may be capable of supplying the
necessary rigidity. If the Sun expanded to the dimensions of a large
red giant its rotational period would be ~ 1000 years. The much
shorter observed periods may be explained if a small fraction of the
envelope contracted onto the degenerate core at the conclusion of the
red giant phase. Spin periods of a single degenerate star which are
<1 day are unlikely to have undergone significant change since its
formation.

Accreting binary magnetic degenerate dwarves are observed to
have spin periods ranging from ~ 1 minute to several hours; some of
the slower ones rotate in synchronism with the orbital motion. If the
magnetic field is not too large then matter accreted from a disc adds
its angular momentum to the star; the expected progressive reduction
of the spin period has been observed. If the field is very large it may
exert a significant electromagnetic torque on the binary companion
star, bringing the rotation and orbital motion into synchronism. Such
systems are known as AM Hercules stars. It is likely that the spins
of accreting degenerate dwarves are determined by these interactions
within the binary system.
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Very little is known about the spins of non-accreting binary
degenerate dwarves, because very few such stars are known (they are
hard to detect because the degenerate star is faint and there is no
unusual variability to attract attention), and none of these is known
to be magnetic. It is possible that their periods may be shorter than
those of single degenerate dwarves, even without accretional spin-
up, because their nondegenerate progenitors were probably rotating
synchronously with the orbital motion, and hence had more angular
momentum than single stars.

4.1.3 Novae Historically, the term nova was used to describe a star
which appeared where none had been known before. In modern usage
it refers to a star undergoing a characteristic sudden outburst, in
which mass is expelled, but after which the star returns to nearly its
pre-outburst state. Novae are distinguished from supernovae (4.3),
in which an entire star explodes, and is completely disrupted or leaves
behind only a neutron star or black hole. Gallagher and Starrfield
(1978) review the theories and observations of novae.

Nova outbursts are a very heterogeneous class of events. A
typical outburst lasts a few months, during which the luminosity
is ~ 1038 erg/sec, mostly at visible or near-visible wavelengths; the

total radiated energy is ~ 10%°

erg. Spectroscopic studies show that
~ 107* — 1075 My, are expelled, at speeds typically ~ 1000 km/sec.
One fact appears to be invariably true, that novae occur in binary
stars in which matter flows from an ordinary nondegenerate star
(generally a dwarf of mass and luminosity not more than those of
the Sun) onto a more compact companion. The spectrum of the
companion itself is not directly observed; its faintness, mass, and
compact size imply that it is a degenerate dwarf. There is frequently
spectroscopic evidence of an accretion disc around the degenerate

dwarf, and it may be inferred that the disc is irradiated by ionizing
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ultraviolet radiation (not directly observable because of interstellar
and atmospheric absorption) produced by the degenerate dwarf itself
or by the inner regions of its accretion disc.

The outline of a successful model of novae is apparent. The
matter accreted by the degenerate star is, like almost all matter in
the universe, rich in hydrogen. The burning of hydrogen to helium
releases an energy € ~ .005, so that, integrated over time, thermonu-
clear reactions produce ~ 50 times as much energy as accretion itself,
and are energetically capable of expelling the accreted matter.

The surface layer of hydrogen-rich matter is heated by the con-
duction of heat from the interior of the degenerate star and by com-
pression as the weight of the overlying matter steadily increases. Af-
ter a sufficiently massive layer has accreted, its peak temperature will
reach a value (~ 5 x 10° °K) at which the release of thermonuclear
energy becomes significant, and leads to still further heating.

In contrast to the usual situation in stellar interiors, this release
of thermonuclear energy is thermally unstable, meaning that the tem-
perature and the thermonuclear energy generation rate rapidly in-
crease once the energy production becomes significant. The thermal
response of an entire star (on time scales slow enough that hydro-
static equilibrium is maintained, an assumption almost always justi-
fied) resembles that of a body with negative specific heat, as discussed
in 1.5; this makes its thermal structure stable against perturbations.
Thermonuclear energy release in a thin layer is very different. If the
layer has mass AM, scale height h, and rests atop a stellar core of
mass M, radius R, and surface gravity ¢ = GM/R?, and we assume
a nondegenerate equation of state and neglect radiation pressure, its
internal energy is approximately given by

B, = _AMkpT (4.1.6)

('7 - 1)/11mp’

where p is the molecular weight, m, the proton mass, and T' the
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temperature. Its gravitational energy is

M
Egrm} = _/m 471'7'2 dr

" (4.1.7)
 GMAM  GMAMH

R _|_ R2 + sy

where we have taken p(r) = pgexp|—(r — R)/h] and have assumed
the scale height h < R. Using h = kgT/(gpum,), we find the total
energy of the layer

E = E;, + Egrav
L GMAM (v \ksTAM (4.1.8)
- R v—1 pmy,

It is evident that the effective specific heat OFE /0T > 0, so that signif-
icant thermonuclear energy release leads to an accelerating thermal

runaway. If the matter is degenerate then h is independent of T to
first order. E;, = Cy + C1T + - - -, where Cy and (7 are constants,
and the linear term is contributed by the ions, which remain non-
degenerate. The effective specific heat is still positive. Only if the
thermonuclear energy production rate is very low (so that it is small
compared to the flow of heat from the slowly cooling degenerate core)
is the layer stable; in this case, which describes the surfaces of or-
dinary white dwarf stars, the temperature is effectively set by the
stable equations of heat flow.

Once the unstable temperature rise begins it rapidly accelerates
because of the steep increase of the thermonuclear energy production
rate with 7' (1.9.4). This runaway instability continues until 0E /0T
becomes negative, which happens when the assumptions made in de-
riving (4.1.6) and (4.1.7) no longer apply. Two such assumptions
eventually fail, the thin layer approximation A < R and the neglect
of radiation pressure. As discussed in 1.13, these both fail when
the luminosity L becomes comparable to the Eddington limiting lu-
minosity Lg (1.11.6); the star then settles into a stable state. Its
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structure resembles that of a luminous giant or supergiant, except
that the amount of mass in the envelope is very small (é 10~4 Mg
instead of ~ 1Mg), so the envelope is much smaller. This is the
generally accepted outline of the events in a nova outburst, and sat-
isfactorily explains the facts that they only occur in binary systems
containing an accreting degenerate dwarf, and that their outburst
luminosity L ~ Lg.

After the conclusion of the outburst, accretion onto the degen-
erate dwarf resumes. The accumulation of a fresh hydrogen-rich
surface layer may be expected to lead to repeated outbursts, whose
intervals depend on the accretion rate and the mass of hydrogen re-
quired to initiate them. Typically, these intervals may be in the range
10% — 10° years, although a few novae have recurred after intervals of
decades. For every nova outburst observed in the last century there
are a large number of binary stars which have undergone, and will
undergo, such outbursts, but have not done so when astronomers
were well equipped to detect them. These binary stars are not lu-
minous (typically < 10~ as bright as the outburst itself), and are
much harder to detect. It is likely that each such star erupts ~ 10*
times in its lifetime, a value which may be obtained by comparing
the rate of novae in our Galaxy to the number of suitable binary
stars. Some of these stars show other kinds of interesting behavior,
and are known as dwarf novae, nova-like variables and AM Hercules
stars (called “polars” because their strong magnetic fields lead to
polarized radiation); together with novae they are called cataclysmic
variables.

A number of questions remain. The duration and luminos-
ity of an outburst and the energy available from hydrogen burning
(e ~ .005) require the transformation of only ~ 10~" My, of hydro-
gen to helium. Calculations typically show that a degenerate dwarf
must accrete ~ 10~*— 1075 M, of hydrogen-rich material in order for
the thermonuclear runaway to begin, although the numerical value
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depends on the mass and internal temperature of the accreting de-
generate dwarf, and on the accretion rate. It is therefore likely that
nearly all the accreted matter is expelled in the outburst; only ~ 2%
need undergo thermonuclear reactions to supply the required energy.
Observations of the mass outflow are consistent with this.

It is unclear whether the beginning of a nova outburst should
be regarded as an explosion, in which matter is rapidly accelerated
to its escape velocity. Such an event would have to take place in
the time ¢ (1.6.1), which is a few seconds for a degenerate dwarf; if
energy is released more slowly the star remains close to hydrostatic
equilibrium, and matter is not directly accelerated to escape velocity.
It is difficult to produce energy so rapidly by the thermonuclear re-
actions of hydrogen. The energy required is given by the sum of the
gravitational binding energy (4.1.1) and the kinetic energy, and is at
least 10'7 erg/gm. At high temperatures and high energy production
rates the burning of hydrogen is catalyzed by heavier elements and
proceeds through chains of reactions like

2C+p— BN+y (4.1.9a)
BN BC+et +v, 4.1.9b)
BC4+p— "N+44y 4.1.9¢)
UN+p— 0 +y (4.1.94)
50 = PN+et + v, (4.1.9¢)
BN +p — 2C+ *He. (4.1.9f)

(
(

There are also similar subsidiary reaction chains.

All reaction chains like those of (4.1.9) have the important prop-
erty that they depend on spontaneous § decays (4.1.9b and e); any
sequence of reactions which turns protons into *He must involve 3
decays. This sets an upper limit to the rate at which the heavy nuclei
can catalyze the reactions. The half lives of *N and 150 are 598 sec-
onds and 122 seconds respectively; the sum of their mean lives (103
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seconds) sets a lower limit to the mean time required to complete the
cycle (4.1.9). This is clearly much too long to permit the completion
of even one cycle in tj,.

At very high temperatures the cycle (4.1.9) is replaced by a
series of proton captures without 8 decays. The most abundant nu-
cleus of those catalyzing (4.1.9) is usually '2C, although after the
cycle has been in operation it is largely transformed to *N. Succes-
sive proton captures on '2C produce first 13N, and then *O (which
has a 71 second [-decay half-life); here the captures stop because
I5F is not a bound nucleus. Other capture chains lead to similar
terminations, although the reaction networks may be more complex.
The energy released is generally < 10 MeV per catalytic nucleus.
In matter of ordinary stellar composition all elements heavier than
helium together comprise no more than 3% of the mass; there are
about 102! such nuclei per gram. An energy release of 10 MeV for
each catalytic nucleus then amounts to less than 2 x 106 erg/gm.
This is less than the gravitational binding energy (4.1.1), so that a
simple thermonuclear explosion does not appear to be possible.

It is often suggested that the abundance of catalytic nuclei in
the accreted matter is enhanced over its usual stellar value by mix-
ing with material from the interior of the degenerate dwarf, which is
believed to be largely 12C and 0. When this assumption is made
calculations predict satisfactory explosions, and there is some evi-
dence for mixing in the abundances of matter expelled in nova out-
bursts. It is unclear how this mixing is to be accomplished. The
boundary between the heavier elements and the accreted hydrogen
is very stable against convective mixing because of the gradient in
molecular weight. In addition, direct contact between these layers
may be prevented by the presence of a layer of helium left on the
surface of the carbon-oxygen core when it was formed, and possibly
added to by the products of each nova outburst.

The most conclusive evidence for the explosive nature of nova
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outbursts would be the observation that they begin with a burst of
radiation rising in a time of a few seconds. Such observations do
not exist, and would be hard to obtain because nova outbursts are
essentially unpredictable; an observer does not know when or where
to look. It would be necessary to continually scan much of the sky
for transient events. Such observations are new to astronomy, but
are possible with electronic detectors which view several steradians
with modest angular resolution (~ 10° picture elements) and rapid
response and signal processing. Spurious terrestrial sources, such
as those produced by meteors and airplanes, may be eliminated by
comparing the signals from two separated detectors, because they
will show a large parallax. The optical study of gamma ray bursts
(4.5) has similar requirements, and entirely new transient phenom-
ena may be discovered.

It may be possible to explain novae without explosions. As
a thermonuclear runaway proceeds on the [-decay time scale
(~ 1 minute) the luminosity increases and the hydrogen-rich layers
swell, until L ~ Lg. Such luminous stars produce an outflowing wind
by a variety of processes (1.15), all of which are hard to calculate. In
the case of a nova the binary companion provides an additional mech-
anism. If the swelling luminous star expands to the size of the binary
orbit, then the companion will tear through the luminous envelope,
violently disrupting it, and probably expelling matter. In some no-
vae mass expulsion continues throughout the visible outburst, so that
some continuing mechanism of expulsion is required even if there is
an initial explosion. The matter expelled by novae is observed to
be very asymmetric, which suggests the influence of the binary com-
panion rather than a process occurring entirely on a spherical star.
After the first few minutes the hydrogen burning layer settles down
to a steady structure with L =~ Lg, whether or not the process began

with an explosive ejection of mass.
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4.2 Accreting Neutron Stars

Accreting neutron stars are naturally analogous to accreting degen-
erate dwarves, and display corresponding phenomena. Because the
gravitational binding energy of a neutron star is ~ 2000 times greater
(1.12), the energy released in accretion is greater in proportion, and
different physical processes are often important. Accreting neutron
stars are therefore much more luminous. Their surface areas are also
much smaller, so that one might expect a qualitative tendency for
their radiation to be at higher frequency; examination of the micro-
scopic physics shows that this is not always so. The visible light
produced by an object as small as a neutron star is almost always
negligible, so that accreting neutron stars were discovered only by
X-ray observation, and most of our information about them comes
from these data. Just as for degenerate dwarves, accretion is rapid
enough to be of interest only when the neutron star has a close bi-
nary companion. Joss and Rappaport (1984) review the extensive
literature. The theory of the neutron stars themselves qualitatively
resembles that of degenerate dwarves (1.12); Shapiro and Teukolsky
(1983) discuss it in detail.

Very little is known empirically about the masses and radii of
neutron stars, just as for degenerate dwarves. There is one accu-
rate mass measurement, that of the binary pulsar PSR 1913416,
whose mass is determined from relativistic effects on its orbit to be
1.40 M. This equals the limiting mass Mc¢p, of a degenerate dwarf
(1.12). All other mass determinations are very approximate, but
all are consistent with this value, and it is plausible (but unproven)
that all neutron stars are born with this mass (see 4.3 for a dis-
cussion). The theoretical relation between the masses and radii of
neutron stars is not accurately known because of uncertainties in the
equation of state of matter at high densities; their radii not sensitive
to these uncertainties and are often assumed to equal 10 km. This
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uncertainty in the calculated radii is at least as large as the effects
of general relativity, which I will ignore. There are no quantitative

measurements of neutron star radii.

4.2.1 Accretion  Accreting neutron stars were discovered as lu-
minous X-ray sources. Accretion may occur at a significant rate
onto neutron stars with binary companions, just as for degenerate
dwarves. The matter may either flow as a consequence of Roche lobe
overflow (3.6), in which case it carries a great deal of angular momen-
tum, or be captured from a wind, probably with much less angular
momentum. In the former case an accretion disc (3.6) is formed;
in the latter this is less certain, and depends on the details of the
flow and the neturon star’s magnetic field. Because accreting neu-
tron stars are found from observations of their X-ray emission, their
discovery is not impeded by the presence of the luminous compan-
ion required to produce a wind, and many examples of such binaries
are known; in fact, their high visible luminosity makes it easier to
identify them as the visible counterpart of the X-ray source.
The Newtonian gravitational binding energy of a neutron star

is
s  GM

" R (4.2.1)

~ 2 x 10%° erg/gm.

ec

I will henceforth use € ~ 0.2. If matter flows onto the neutron star
through an accretion disc which extends to its surface, the theory of
accretion discs applies, and the peak surface effective temperature

(3.6.12) is
. 1/4
Mec?
MECAN 422
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which ranges up to ~ 107 °K. At this temperature a black body
radiates most of its power in X-ray photons of a few KeV energy,
qualitatively consistent with the observed X-ray spectra. A bound-
ary layer at the neutron star surface may have somewhat higher
temperature. At a given accretion rate T, is higher than its value
for accretion onto degenerate dwarves in proportion to the factor
(e/R*)Y* x R3/* ~ 200. Because the gravitational binding ener-
gies of neutron stars are so large, typical accretional luminosities are
in the range 1036 — 1038 erg/sec, much greater than those of accreting
degenerate dwarves. The upper end of this range is close to the Ed-
dington limit Lg (1.11.6), and may reflect the trapping of radiation
at high accretion rates discussed in 3.7. The actual flow geometry
and radiation transport are probably much more complex.

If a neutron star has a significant surface magnetic field its ac-
cretion disc will not extend down to the stellar surface, but will give
way to a flow of the accreting matter along the magnetic field lines.
This flow will strike the surface with a kinetic energy nearly equal to
the gravitational binding energy (4.2.1). Protons will have an energy
of about 200 MeV. At this energy Coulomb drag implies a stopping
length (2.2.14) of ~ 8 x 10%* n;! cm~2, corresponding to a column
density ~ 10 gm/cm?2. This exceeds the column density of the entire
accretion flow if L & Lg (3.7). There cannot be an accretion shock
(unless some other process drastically reduces the stopping length),
for its thickness would be greater than that of the flow.

Instead, it is necessary to consider the deceleration of the in-
falling ions in the surface layers of the neutron star. They heat the
stellar atmosphere, which then radiates. Because the stopping length
is long, much of the accretion power is deposited deep in the atmo-
sphere, at optical depths R 1. The radiation field in these deep layers
approaches that of a black body, and emerges from the surface with
an effective temperature approximately given by (4.2.2). The dilute
and optically thin upper layers of the atmosphere are also heated by
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Coulomb drag, and reach higher temperatures because they radiate
less effectively. Their principal cooling mechanism may be Compton
scattering (2.3) of the radiation from the deeper layers, but they
also contribute more energetic (harder) X-rays to the spectrum by
bremsstrahlung (2.6.1). The result, calculated by Alme and Wilson
(1973), is a complex multi-component spectrum, which is at least
qualitatively consistent with observations of X-ray sources.

It is remarkable that accretion onto neutron stars is expected to
produce lower energy X-rays than accretion onto degenerate dwarves,
because the neutron star T, (4.2.2) is much less than the degenerate
dwarf accretion shock T (4.1.5). This expectation is borne out ob-
servationally, if the hard X-rays attributed to the degenerate dwarf
accretion shocks are compared to the radiation from accreting neu-
tron stars. Of course, radiation from degenerate dwarf surfaces at the
temperature (4.1.2) is characterized by a much lower temperature.

The physics of accreting neutron stars is complicated by the
presence of magnetic fields. These channel the flow onto a small
portion of the neutron star’s surface, so that the optical depth may
be high even if M < Mg (3.7.7). If B 2 10'2 gauss the magnetic
field contributes a large cyclotron opacity (2.6.2). If hwp R kgT
(2.6.16) then the field also affects the microscopic physics of the
matter, changing electron wave functions from nearly free particle
states (whose gyration about the field may be described classically)
to states strongly confined in directions perpendicular to the field.
The result is that the matrix elements for all electronic processes
differ from their usual values. At the highest fields hwp > kpT, and
the electrons are nearly all in states in which their magnetic quantum
number (their angular momentum parallel to the field) m = 0; their
spins are also aligned. Calculations of both the microscopic physics
and the overall hydrodynamic flow and radiation transport around
magnetic neutron stars are complex and difficult, and the results
depend on the values of several parameters.
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4.2.2 Spin and Fields It was observed that the intensities of many

(but not all) luminous X-ray sources are regularly pulsed. The first
pulse periods discovered were a few seconds, but they have now been
observed to span the range 107! — 102 seconds. These periods are
very stable, but they show regular Doppler shifts attributable to
binary orbital motion. Optical observations of these X-ray sources
show ordinary nondegenerate stars with the same orbital periods,
but with oppositely phased Doppler shifts. These stars must be
binary companions of the X-ray sources, and are sources of mass for
accretion. Pulsed X-ray sources with these properties are sometimes
called “binary X-ray pulsars.” This name is unfortunate because
they are very different from ordinary pulsars (4.4), a few of which
are also binary and a few of which are X-ray sources.

The outline of a theory of these objects (which I will call accret-
ing magnetic neutron stars or pulsating X-ray sources) was immedi-
ately apparent. The accretion flow onto a magnetic neutron star is
channelled by its field, so that the power released per unit area and
radiated intensity vary across its surface. As it rotates an observer
sees varying aspects of the surface, and therefore an intensity and
spectrum modulated with the spin period. The minimum required
value of the surface magnetic field is probably ~ 10® gauss. Obser-
vations of pulsars suggest that most neutron star magnetic fields are
~ 1012 —10'3 gauss; features in the spectrum of a few accreting mag-
netic neutron stars have been identified with cyclotron radiation lines
produced in fields of this magnitude. An accreting neutron star with
a magnetic field much less than 10% gauss would not be expected to
show modulated X-ray emission. Many unmodulated X-ray sources
exist, and may be explained as neutron stars with small magnetic
fields, or possibly as black holes.

The chief theoretical difficulty is the description of the interac-
tion of the accreting matter with a neutron star’s magnetic field. This
problem is hard because it depends on the accretion flow, which is
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not known in detail (whether an accretion disc or a more nearly radial
flow, the actual distribution of density and velocity are not quantita-
tively calculable), and also on complex magnetohydrodynamics and
plasma physics. If these difficulties are slighted it is possible to make
estimates which are consistent with much of the data.

Assume that there is an abrupt transition from an inner to an
outer flow regime at a radius r4. For r < r4 the magnetic stress
B?% /87 exceeds the fluid stress (3.1.6) pu? + P =~ pu?. Because hot
ionized gases are very good electrical conductors, they cannot readily
flow across magnetic field lines (3.9). If the magnetic stress much ex-
ceeds the fluid stress, the magnetic field configuration will be nearly
that of its vacuum state, and the fluid will only be able to flow par-
allel to the vacuum field lines. It will follow those field lines which
extend from the star to r4, where the fluid can bend the field. This
region in which the magnetic stress is dominant is called the mag-
netosphere. If r4 > R, where R is the stellar radius, the accretion
flow will be guided onto a small area at the magnetic poles.

For r > r4 the fluid stress exceeds the magnetic stress, and it
is assumed that the fluid flows as if there were no field. Because
the fluid is a good conductor its inward motion sweeps in the stellar
field, which is largely excluded from the fluid for » > r 4. If the infall
is spherically symmetric the stellar field is completely excluded from
this region. We will assume that here the matter flow is that of an
accretion disc, as described in 3.6.

Because we cannot calculate the complex processes occurring at
r & r4, we assume that there the accreting matter is captured from
the accretion disc, along with its Keplerian orbital angular momen-
tum at that radius. Its mass and angular momentum are added to
those of the neutron star. The radius r4 is found by comparing the
magnetic and fluid stresses

B—Z = pu’. (4.2.3)
8w
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For B substitute the equatorial magnetic field of a dipole moment g,
B = p/r3, and for u the Keplerian orbital velocity u = \/m.
The disc density is less certain, because it depends on the viscous
stress or radial component of velocity, which are unknown even to
order of magnitude. We write p = (M/(4nr%v), where ¢ = 1/1/2
would correspond to spherically symmetric free radial infall and
¢ > 1 to slow radial motion through a disc. For r < r4 the flow
may approximate radial infall, with { ~ 1. Then r4 is found from
(4.2.3):

2 2/7
TA= <m> . (4.2.4)
For representative neutron star parameters (pu = 103° gauss cm?3,
M =10"7 gm/sec, M = 1.4M, and ¢ = 1), 74 ~ 3 x 108 cm. For a
magnetic degenerate dwarf (u = 1033 gauss cm?, M = 10Y7 gm/sec,
M =0.7TMg, and ( = 1), 74 ~ 1.6 x 10'° cm. In both cases 74 > R.
For a degenerate dwarf in a compact binary system r4 may approach
the distance to the companion star, in which case it may prevent the
formation of any accretion disc; this is believed to describe the AM
Hercules stars (4.1.2).
The minimum equatorial surface dipole field required in order
to channel the accretion flow (r4 > R) may be obtained from (4.2.4),

and is _
o (2002 (GM) VA

w5 (4.2.5)

For ( =1, M = 107 gm/sec, and typical neutron star parameters
this is ~ 5 x 107 gauss; for degenerate dwarf parameters it is ~ 10%
gauss.

The specific angular momentum accreted is

L= GMT‘A

— (GM)3/7,U,2/7(2CM)_1/7. (4'2'6)
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The rate of change of the accreting star’s angular momentum is

Az _
dt . (4.2.7)
— (GM)3/7,U,2/7M6/7(2C)_1/7,

where 7 is the moment of inertia and {2 the spin frequency.
If Qt;, < 1 (1.6.1) then the fractional variation in Q is much

more rapid than that in Z. Taking Z to be constant, expressing

the result in terms of the period P = 27 /), and assuming that the

accreted angular momentum is parallel to that already possessed by

the star, gives

P2 (GM)3/7;1,2/7M6/7
27 (20)Y7T

P=— (4.2.8)
This relation may be directly compared to the observed P and P,
if estimates are made for Z (from models of neutron star interior
structure), ¢, p, and M, and if M is calculated from the observed
luminosity. The data are approximately consistent with this theory
(Joss and Rappaport 1984).

The significance of this consistency should not be exaggerated.
Because r4 and /¢ are only weak functions of the various parame-
ters, their dependence is not tested by the approximate agreement
between the data and the theory. The magnetic moment p is pre-
sumably different for different neutron stars. Without independent
measures of it, which generally do not exist, the predicted close cor-
relation of P with P2M®/7 would not be found even if (4.2.8) held
exactly. Essentially the same results would be obtained if the theory
of the magnetospheric boundary were replaced with the simple as-
sumption of a constant £, guessed at or fitted to the data, replacing
(4.2.8) by the simpler expression

B P2MY

P =
2nT

(4.2.8")
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It is possible to distinguish accreting degenerate dwarves from
accreting neutron stars on the basis of their values of P, because
both (4.2.8) and (4.2.8') predict that at a given luminosity P is about
103 times smaller for degenerate dwarves. One important empirical
conclusion is also established, that the accreted matter does carry
significant angular momentum, although not necessarily enough to
form a disc at 7 > r4.

The actual behavior of P is more complicated than (4.2.8) would
indicate. The previous discussion assumed that the magnetosphere
exerts no torque on the flow at » > r4. This must be correct for
Q = 0, but is unlikely to be so if 2 is large. It is plausible that
the critical angular frequency 2. at which this torque equals the
accretion torque is that for which the Keplerian angular velocity at
r4 equals the velocity of rotation of the accreting star’s magnetic
field lines there, which may be thought of as rigid spokes extending

GM
Q. =/ . (4.2.9)

Substituting 74 from (4.2.4) gives

from the star:

Q. = (GM)> 7 =87 (2¢ M3/, (4.2.10)

When the spin frequency of the accreting star reaches this value it is
likely that there is no further mean torque, and that its frequency and
period stabilize. If  and M vary, as is likely, €2, will fluctuate about
the mean (Q.), and Q will decrease when instantaneously €2, < €.
For the neutron star parameters we have used (and ¢ = 1) Q.
corresponds to P ~ 2 sec, while for degenerate dwarf parameters it
corresponds to P ~ 20 minutes. A number of accreting magnetic
neutron stars (including, but not only, those with Q comparable to
the expected 2.) show a very variable P which even changes sign,
implying that sometimes angular momentum flows from the star to
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the disc. In those cases for which Q ~ €. this is consistent with
theory.

Very few useful data exist for accreting magnetic degenerate
dwarves because their larger Z implies a small P. The shortest
observed periods of ~ 1 minute require (if the theory is correct)
1 S 3% 103! gauss cm3, instead of the pu ~ 1033 gauss cm3 of strongly
magnetized degenerate dwarves; this is consistent with the absence
of evidence for strong fields in their spectrum and polarization, but
still permits the field to exceed the minimum (4.2.5).

Very slowly rotating accreting neutron stars spin up very
rapidly. In a few cases the characteristic e-folding time of the period
tyy = P/|P| is less than a century. Ordinarily it is hard to observe
such rapid processes because at any given time the number of objects
passing through such a brief stage in their evolution is small. Equiv-
alently, it is possible to argue that if the duration of this stage is 100
years, for every one we see there must be an additional 108 objects in
the Galaxy which passed through this stage in its age. These num-
bers exceed by a large factor the number of suitable binary systems
containing neutron stars.

The likely resolution of this problem is that slowly rotating ac-
creting neutron stars are made from faster ones, so that each neutron
star passes through the slowly rotating (but rapidly accelerating)
phase many times. There are several possible mechanisms for reduc-
ing ). Nearly all these accreting magnetic neutron stars accrete from
a luminous companion with a stellar wind. If the wind is suitably
heterogeneous, the angular momentum may even reverse direction,
changing the sign of (4.2.8), and reducing Q while accretion contin-
ues. This may explain the fact that some neutron stars with small
Q occasionally increase their periods instead of reducing them, even
though Q <« Q..

The mean trend of the observed X-ray sources, even the slowly
rotating ones, is for P to decrease, so that long spin periods are
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not maintained by alternate episodes of accretion of matter with
opposite directions of angular momentum. Slow rotation may be
restored if the neutron stars lose angular momentum when they are
not observed; that is, when they are not accreting. If {2 much exceeds
Q. the spin may prevent accretion (rather than just reversing the
sign of the torque) because this implies that the centrifugal force
on matter on the field lines at r4 exceeds the attraction of gravity.
The only way to obtain Q > . for a long spin period is for p to
be very large or for p to be very small. It is conceivable that these
stars have extraordinarily large p, but it is not possible for them to
change p between their episodes of spin-up (when their rates of spin-
up suggest that p is comparable to that for other accreting neutron
stars) and spin-down. Spin-down may occur if the external supply of
matter and p are reduced, which is described by small M in (4.2.10),
although accretion does not take place and no X-rays are emitted.

The rate of spin-down during these dark episodes is even harder
to calculate than the rate of spin-up when accretion takes place, and
there are no data. It may be comparable in magnitude to (4.2.8),
with M now some characteristic mass flow rate above the magneto-
sphere, but this will be very slow if M is small, as is implied by the
requirement that €2, (4.2.10) decrease below the already low Q. In
this case the number of dark systems is at least ~ (.0/Q)% ~ 10°
times the number of bright ones spinning up, where (2. is the value
of . determined by the accretion rate during the bright spin-up
phase. This number is daunting, if not impossible.

It is also of interest to consider the rate of spin-down of a rotating
magnetic dipole. In vacuum the power radiated is

2ji?

analogously to (2.6.1), where p refers separately to each component
of the vector fi. This is negligible for neutron stars rotating as slowly



Accreting Neutron Stars 253

as most of the accreting ones. However, in a medium which can prop-
agate waves with speed v,,, to which the oscillating dipole moment
couples, an analogous derivation shows that the radiated power is

P~ (4.2.12)

provided that the interaction with the waves remains linear. If v,
describes magnetohydrodynamic waves in the accretion disc or other
surrounding fluid it may be orders of magnitude less than ¢, and very
rapid spin-down is conceivable. The applicability of (4.2.12) and the
quantitative magnetohydrodynamics of this flow are speculative.

4.2.3 X-Ray Bursts The matter accreted by a neutron star will
generally be of ordinary stellar composition, and capable of releas-
ing a fraction ¢ ~ .007 of its rest mass in thermonuclear energy.
In contrast to the case of degenerate dwarves, where thermonuclear
burning of accreted matter releases more energy than accretion it-
self (¢ ~ 10™%), for neutron stars thermonuclear energy might be
thought insignificant compared to accretion (e ~ 0.2). Although the
total energy released is relatively small, it is still of great interest
because it produces characteristic X-ray bursts which are analogous
to nova outbursts (4.1.3).

X-ray bursts typically last a few seconds to a minute, have a
peak luminosity L ~ 103® erg/sec, and recur on time scales of an
hour to days. Their emitted spectrum is roughly that of a black
body at the temperature implied by the surface area of a neutron
star and the observed luminosity.

Thermonuclear energy release of matter accreted onto a neu-
tron star may be thermally unstable for the same reasons discussed
in 4.1.3 for degenerate dwarves. Such thermonuclear flashes are
the natural explanation of X-ray bursts. The brief durations of the
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bursts, shorter than the half-lives of the S-unstable catalysts in the
CNO cycle (4.1.9), imply that hydrogen burning is not their chief
source of energy. Helium burning by the reaction (1.9.30) may pro-
ceed essentially arbitrarily rapidly, and is the likely source of energy.
Quantitative calculations (Joss and Rappaport 1984) have shown
that this model accounts fairly well for the observed properties of
X-ray bursts.

It is striking that the accreting magnetic neutron stars discussed
in 4.2.2 do not show X-ray bursts, while the X-ray sources which do
have bursts do not show regular rotational periods. The probable ex-
planation, which is supported by detailed calculations, is that when
the accreting matter is concentrated onto the magnetic poles its tem-
perature is higher and its thermonuclear fuel is consumed steadily as
it is accreted, rather than accumulating until an outburst occurs.
The accreting neutron stars which have bursts then have lower mag-
netic fields, probably below the value (4.2.5).

Most of the X-ray sources in globular clusters show X-ray bursts,
which establishes that they are accreting neutron stars with small
magnetic fields. Earlier suggestions that they were black holes can-
not account for this phenomenon. The other bursting X-ray sources
are concentrated in the central bulge of our Galaxy, evidence that
they are part of the same population of old (~ 100 years) stars as
the globular clusters. They are almost certainly members of binary
stellar systems, for there is no other adequate source of matter for
accretion. Their companion stars are usually not observed in visi-
ble light, and are therefore probably faint old stars of low mass. In
contrast, the companions of the accreting magnetic neutron stars are
usually luminous young (~ 107 years) massive stars, although there
are a few exceptions. This may be interpreted to mean that the mag-
netic field of a neutron star decays in a time between 107 and 10'°
years.
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4.2.4 v-Rays  All the neutron star phenomena we have so far dis-
cussed are thermal, in the sense that the particle distribution func-
tions are Maxwellian in the frame of the mean fluid velocity, and no
acceleration of energetic particles is required. The only exception to
the Maxwellian distribution functions was the presence of fast ions,
representing the penetration of accreting fluid into a stellar surface.
Their acceleration is only that of gravity, and their slowing is sat-
isfactorily explained as the Coulomb drag of test particles within a
thermal plasma.

The X-ray source Cygnus X-3 is known to produce v-rays with
energies approaching 10'® eV (Samorski and Stamm 1983). This
enigmatic object appears to be a binary star with a 4.8 hour orbital
period, but displays neither a spin period nor X-ray bursts, and there-
fore need not contain an accreting neutron star. Various authors have
suggested that it contains a rapidly spinning pulsar (4.4). Because
pulsars are a nonthermal phenomenon, the presence of very energetic
~-rays, and the acceleration of the ~ 106 eV particles required to
produce them, is not astonishing (Eichler and Vestrand 1984).

Soon afterward, y-rays of similar energy were reported from the
accreting magnetic neutron stars Vela X-1, Hercules X-1, and LMC
X-4 (Protheroe, et al. 1984, Baltrusaitis, et al. 1985, Protheroe
and Clay, 1985), and v-rays of ~ 102 eV from Hercules X-1 and
4U0115+63 (Dowthwaite, et al. 1984, Chadwick, et al. 1985). The
observed signals were not far above the threshold of statistical sig-
nificance, but appear to be genuine. This was astonishing, because
there had been no reason to suspect the existence of any nonthermal
phenomena in any accreting magnetic neutron star. The absence of
nonthermal phenomena was generally attributed to the presence of
dense accreting thermal plasma, which was assumed to prevent the
development of the high electrostatic potentials required to acceler-
ate energetic particles and to explain pulsar activity.

The four neutron stars from which y-rays were observed have
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spin periods (1.24, 3.61, 13.5, and 283 seconds) which span the range
from fast to slow. They do not differ strikingly from other objects of
this class, except that they all have smaller values of |P\ than other
objects of corresponding P and M (Joss and Rappaport 1984, Chad-
wick, et al. 1985). This might imply smaller magnetic fields, but in
two cases this is contradicted by the values of the cyclotron frequency
inferred from the X-ray spectrum. A significant fraction of the total
power of these systems appears to take the form of energetic particle
acceleration. If these objects do not systematically differ from other
accreting magnetic neutron stars then more sensitive observations
will discover many more high energy ~-ray sources.

Given a charged particle of 106 eV energy, it is easy to produce
~-rays of comparable (but somewhat smaller) energy. An electron of
this energy will transfer nearly all of its energy to a photon by Comp-
ton scattering (2.6.3) if the photon were originally of microwave or
higher frequency. It is difficult to accelerate such energetic electrons
in strong magnetic fields because they radiate both synchrotron radi-
ation and curvature radiation, the process analogous to synchrotron
radiation but in which the electron is accelerated as it follows a
curved magnetic field line. A proton of high energy will produce
v-rays (and neutrinos) by colliding with protons at rest:

p + p — pions + other hadrons

T = v+

_|_

™ —>u+—|—yu

4.2.13
,u+ —et + Vy + Ve ( )
(O T o 7

B — e + v, e

The electrons and positrons may subsequently produce additional
~v-rays by Compton scattering.
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It is hard to explain the acceleration of 106 eV charged parti-
cles, even protons. At least three classes of mechanisms have been
considered. It might be that accreting matter avoids some of the
neutron star’s open magnetic field lines, and that on these field lines
it could accelerate energetic particles like a pulsar (though appar-
ently without producing radio pulses), while the thermal accretion
process proceeds on other field lines. Unfortunately, pulsar theory
predicts an upper limit to the accelerating potential (4.4.20) which
falls far short of that required, a shortfall which is worse in propor-
tion to P2 for long spin periods. Further, pulsar activity is driven
by neutron star rotational energy, and this model would imply a rate
of spin-down orders of magnitude faster than the observed rate of
changes in spin period (which also usually have the wrong sign).

A second mechanism (Chanmugam and Brecher 1985) applies
pulsar theory to an accretion disc, as was suggested by Blandford
(1976) and Lovelace (1976) in order to explain energetic particle ac-
celeration in quasars. This mechanism is uncertain because the mag-
netic field magnitude and distribution in a disc are quite unknown.
If it is effective, it should take place in all accretion discs, including
those around nonmagnetic neutron stars, black holes, and degenerate
dwarves. Pulsar particle acceleration depends on the scarcity of free
charged particles which could “short out” the accelerating field; it
is unclear how this extraordinarily good vacuum could be obtained
near an accretion disc in a mass-transfer binary, where ionized gas
flows in abundance.

A third mechanism involves acceleration within the magneto-
sphere. Particles on open field lines will escape immediately, but
protons gyrating around closed field lines may bounce back and forth
between the magnetic poles many times. If a suitable density of
plasma waves (for which there is yet no evidence) is excited by the
infalling thermal plasma, energetic particles may gain energy by scat-
tering from the waves (2.5.2), thus indirectly tapping the energy of
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accretion. In order to produce a large power in the accelerated parti-
cles it is necessary that they draw upon the gravitational acceleration
of matter into the deep potential close to the neutron star.

The ingenuity of theoretical astrophysicists will surely develop

more models.

4.3 Supernovae

4.3.1 Phenomenology  Supernovae have been observed with the

naked eye since ancient times, although the records of prescien-
tific observers do not always make it possible to distinguish super-
novae from unusually bright novae or even from the more spectacular
comets. Trimble (1982, 1983) presents an extensive review.

Supernovae are catastrophic explosions which destroy an entire
star. The debris of these explosions typically have a mass of 1 — 10
M, and are expelled with velocities in the range 108—2x10% cm/sec.
Supernovae are extraordinarily luminous, often as bright in visible
radiation as an entire galaxy, and are therefore readily detected on
photographs of distant galaxies. This intense radiation lasts for sev-
eral months, fading gradually. The total energy radiated is generally
in the range 10%° — 105! erg. Some nearby supernovae have been seen
in the daytime. Supernovae in our own Galaxy are rare, with the last
four generally accepted events observed in the years 1006, 1054, 1572,
and 1604, all before the invention of the telescope. Supernovae were
originally termed nowvae, because they appeared as new stars where
none had been known before. The distinction between novae (4.1.3)
and supernovae followed the observation in 1885 of a supernova in
the Andromeda galaxy, and the later recognition of the great dis-
tances of external galaxies, which implied the enormous luminosity
of supernovae.
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Studies of distant galaxies have collected data on hundreds of
supernovae, some of which have been bright enough to permit spec-
troscopic observations of good resolution. Because these data are of
high quality, a nearby supernova, though spectacular, might not be
particularly informative. The mean rate of occurrence of supernovae
is estimated (uncertainly and controversially) as one per ~ 30 years
in a galaxy like our own. Most of the supernovae in our Galaxy are
not observed because of the great extinction (scattering and absorp-
tion) of visible light by interstellar dust. Between us and a similar
point on the far side of the Galaxy this extinction may reduce the
intensity by a factor ~ 10716, This would make even a supernova un-
observable in visible light, though not necessarily so in the infrared,
where the extinction coefficient is much less (roughly in proportion
to the photon frequency).

Supernovae appear to fall into at least two distinct classes, with
a few unusual events fitting neither class. By noting the kinds of
galaxies in which they occur, and the populations of stars making
up these galaxies, it has been shown that Type I supernovae occur
in populations of very old stars, while Type II supernovae occur
in populations containing much younger stars. This has important
implications for their origins.

The expanding debris of a supernova are naturally called its
remnant (3.4). These remnants are generally observed as nonther-
mal radio sources, believed to result from the synchrotron radiation
of relativistic electrons accelerated by the interactions of the expand-
ing remnant with the interstellar medium (2.5). Within this cloud
there may be a compact remnant—a neutron star or a black hole.
In a few cases a neutron star is known to be present because it is
observed as a pulsar (4.4; the most famous is the pulsar within the
Crab nebula, the remnant of the supernova of 1054). Most other su-
pernovae, including those observed in historic times, show no direct
evidence for a neutron star. It is possible, or even likely, that these
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supernovae completely disrupted their progenitor star, and left no
compact remnant. An isolated black hole or neutron star which was
not a pulsar would be hard to detect, and could be present.

4.3.2 Visible Radiation = The observation that supernovae are lumi-

nous for several months has important implications. If an exploding
star suddenly expands from a radius g, mean density pg, and inter-
nal energy density £y at a characteristic velocity v, and its matter is
characterized by an adiabatic exponent v (1.9.7), then these quanti-
ties scale with time approximately as

r~ vt (431@)
AN

P~ po <—) (4.3.1b)
To

£ ~ & (”—t> . (4.3.1¢)
To

The total internal energy of the expanding fluid, ignoring radiative
losses, is
E~E&rd

( ot ) ~3(y-1) | (4.3.2)

The internal energy is gradually transformed to kinetic energy, as a
pressure gradient accelerates the matter. The exponent 7 is generally
betwen 4/3 and 5/3, so that when vt > 7y the remaining internal
energy F < Ej.

The radiated energy must be drawn from the internal energy of
hot matter. If there were no continuing source of internal energy after
the initial explosive event the energy available for radiation would
decrease rapidly for ¢ R ro/v. Because copious radiation is observed
for t ~ 107 seconds, and v is observed spectroscopically to be in the
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range 108 — 2 x 10° cm/sec, this argument implies rg ~ 101% — 106
cm. This inferred radius is extraordinarily large for a star (the largest

red giants are smaller than 104

cm), and it does not appear to be
possible to suddenly heat and explode such a large configuration,
even if it were to exist. The only explanation of the observed long
duration of luminous supernova radiation is continuing replenishment
of the internal energy of the expanding matter.

There are at least two ways in which internal energy may be
replenished. If the exploding star is surrounded by an extended gas
cloud, the expanding debris will collide with the cloud, and a portion
of its kinetic energy will be thermalized as internal energy. This pro-
cess is analogous to the blast wave formed which the supernova debris
later collide with the surrounding interstellar medium (3.4), but the
distance and time scales are very much less. Because the density and
optical depth of the cloud are high, the radiant energy must diffuse
through the cloud, and the emergent spectrum may resemble that of
a black body, although the temperature of the matter immediately
after it passes through the shock will be very high. Equating the
power released in the shock to that radiated by a black body leads
(for plausible parameters) to a surface effective temperature in the
range 5,000 — 10,000 °K, consistent with observations of supernova
spectra. This model requires that the supernova be surrounded by a
gas cloud of radius 10 —10'® cm, which must be attributed to mass
loss by the pre-supernova star, probably in the few hundred years
immediately prior to the supernova.

An alternative model for the replenishment of internal energy
suggests that the supernova debris contain a large quantity of ra-
dioactive material whose decay supplies the required energy. The
processes

**Ni+e~ — %%Co + v,

4.3.3
6Co+ e~ — 5%Fe + 1, ( )



262 High Energy Phenomena

proceed with half lives of 6.1 and 79 days, respectively (including a
small contribution to the rate of the latter process by positron emis-
sion), with the electrons captured from bound atomic levels. These
decay rates, measured under terrestrial conditions, are essentially the
same whenever T < 3 x 10° °K, so that the K-shell electrons remain
bound to the unstable nuclei. In the early stages of a supernova
explosion interior temperatures will be higher than this value, but
simple consideration of the energy contained in the radiation field
shows that by the time 7 & 103 ¢m (¢ R 1 hour — 1 day) T will
drop sufficiently that the terrestrial decay rates are applicable. This
hypothesis is attractive because it offers a natural explanation of the
nearly exponential decay of intensity observed for many supernova
light curves (those of Type I), with decay rates close to those of the
nuclear decays (4.3.3). It has the additional advantage of explaining
the relatively high cosmic abundance of °®Fe, which must be copi-
ously produced by supernovae in which (4.3.3) is important, and is
implied by the expected efficient nucleosynthesis of 6Ni under con-
ditions occurring in some models of supernova interiors. The decay
by spontaneous fission of 2°*Cf (half life 61 days) has also been sug-
gested, but would imply the production of excessively large quantites
of rare actinide and fission product isotopes.

It is apparent that an exploding star which did not produce a
large quantity of 5°Ni, and was not surrounded by a suitable gas
cloud, would not produce the long duration of visible light emission
characteristic of observed supernovae. If we had not known of the
empirical properties of supernovae, we probably would not have pre-
dicted either of these processes, and would not expect supernovae to
be the long lived optical objects they are. It is possible that there
are stellar explosions which do not produce the familiar visible su-
pernovae. These may be expected to show much briefer bursts of
radiation, whose duration (¢ ~ rg/v) ranges from a few hours (if
r ~ 10" c¢m, characteristic of a red giant) to as short as a second (if



Supernovae 263

r S 109 cm, characteristic of a degenerate dwarf). Because of their
small size, the peak power these explosions radiate in visible light is
also very much less than that of observed supernovae, although large
compared to that of ordinary stars. Such events would be essentially
undetectable in conventional photographic searches for extragalactic
supernovae. Most of their radiation would be at ultraviolet or X-ray
wavelengths, which are much harder to observe.

At present, the only way to infer the existence of stellar explo-
sions which are not visible supernovae would be to find a supernova
remnant or neutron star young enough and close enough that the
event which formed it should have been observed in historic times
as a visible object, but was not. There is no clear evidence for such
objects. One young supernova remnant, known as Cassiopeia A and
estimated to be 300 years old, was not observed in visible light, but
it is a matter of controversy what limits may be set on its visible
luminosity, in part because of significant interstellar extinction in
its direction. Finding relatively faint and brief stellar explosions is
an important challenge for instruments designed to study transient
astronomical events.

4.3.3 Mechanisms A mechanism for supernovae must both trig-
ger a sudden catastrophic event and produce the observed explosion.
These requirements are distinct, and should be considered separately.
Because at least two distinct types of supernovae are observed, oc-
curring in different populations of stars, at least two mechanisms are
required.

The most obvious mechanism of supernova explosion is the re-
lease of thermonuclear energy. Most stars (the exceptions are neu-
tron stars, and any degenerate dwarves which have, contrary to ex-
pectation, iron interiors) would explode if all their thermonuclear
energy could be released suddenly. Under ordinary conditions this
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cannot happen, because thermonuclear energy generation is sta-
bly self-regulating. As discussed in 4.1.3, this is not the case for
thin shells of thermonuclear fuel, but these do not contain nearly
enough energy to power a supernova. In a degenerate stellar inte-
rior, such as that of a degenerate dwarf, giant, supergiant, or other
very evolved star, the pressure is nearly independent of tempera-
ture: P = Py[l + O(kpT/er)?], where ep is the electron Fermi
energy. Then the hydrostatic structure and gravitational binding
energy Fg,,, are similarly nearly independent of temperature. The
internal energy of electron-degenerate matter is of the form

Ei;,, =Co+CT~+---, (4.3.4)

with C1 > 0. The C; term is contributed by the ions, which remain
nondegenerate. The total energy is of the form

E = E;, + Egrav

(4.3.5)
—C+CT+---.

The effective specific heat 0E /0T is positive, in contrast to the usual
case of nondegenerate stellar interiors (1.5). Thermonuclear energy
generation is then unstable, and leads to an accelerating thermal
runaway. This runaway ends only when the temperature rises enough
that the electrons become nondegenerate, at which high temperature
the reaction rates may be so rapid that the energy release in the time
tr, (1.6.1) required for the star to expand may be sufficient to disrupt
it.

This thermonuclear explosion mechanism has been suggested to
occur with helium, carbon, oxygen, and perhaps heavier fuels (mix-
tures of elements near silicon). In each case the details of the con-
ditions under which it begins depend on the prior evolution of the
star, and are not readily summarized. Whether the star is actually
disrupted depends on its density and on the details of its structure
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and the properties of its matter. If the thermonuclear runaway is
insufficiently violent the star will settle into a state of steady en-
ergy release, rather than being disrupted, and will remain there until
the burning fuel is exhausted. At the high densities (~ 10 — 1010
gm/cm3) characteristic of these runaways, hot stellar matter rapidly
radiates neutrinos, whose luminosity far exceeds that radiated as
photons. The neutrino emission determines the course of stellar evo-
lution, and may perhaps drain enough energy from a thermonuclear
runaway to prevent stellar disruption.

A quite different mechanism of triggering a supernova depends
on the properties of the equilibrium equation of state of matter at
high density or high temperature. As discussed in 1.5, a star with
mean adiabatic exponent v < 4/3 is unstable, and will collapse or
explode on the time scale t,. If v decreases below 4/3 as the result
of a decrease in pressure in a star previously in equilibrium, it can
only collapse. If v ~ 4/3 throughout a star, then a significant de-
crease of v in its core may reduce the mean v below 4/3. There are
several ways in which this may possibly take place. In a very mas-
sive and luminous nondegenerate star the core is always too massive
(Meore > Mcp; 1.12) to be supported by degeneracy pressure, and
its temperature will steadily rise throughout its evolution. When it
reaches ~ 5 x 108 °K the thermal equilibrium density of electron-
positron pairs becomes significant. The creation of these pairs is
endothermic because of their rest mass, and reduces the particle ki-
netic energy and radiation energy which contribute to the pressure,
thus reducing both P and 7. Endothermic nuclear processes have
similar effects in dense degenerate matter at yet higher tempera-
tures, as stable heavy nuclei (like 56Fe) disintegrate to yield He and
neutrons, which are less tightly bound. This may occur in the de-
generate cores of stars massive enough for nuclear reactions to have
produced %%Fe, but less massive than those in which pair instabil-
ity occurs. In cold degenerate matter at even higher densities the
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electron Fermi energy and chemical potential are high enough that
it becomes energetically favorable for the electrons near the Fermi
surface to be captured on ordinarily stable nuclei. By reducing the
equilibrium electron density at a given mass density, this reduces P
and . This process may occur in any degenerate star (or degenerate
core) whose mass is sufficiently close to M¢yp,.

All of these equation of state instabilities produce collapse,
rather than explosion, but collapse may lead to explosion. The
rapidly increasing density and temperature of hydrodynamic collapse
lead to rapidly increasing thermonuclear reaction rates, and possibly
to explosion. The collapse of degenerate matter may instead continue
until it reaches neutron star density. Then two mechanisms exist to
reverse the collapse and possibly to produce an explosion. It is known
(1.12) that the limiting mass of cold neutron stars Mg; > Mc, be-
cause nucleons strongly repel each other so that the equation of state
of matter at neutron star densities is very “stiff.” This stiff equa-
tion of state may lead to a hydrodynamic bounce, sending a shock
into the outer layers of the star, and perhaps expelling them. Al-
ternatively, a bounce may be produced when neutrinos emitted by
the hottest and densest inner regions of the collapse are absorbed
or scattered further out, depositing their energy and momentum in
matter whose gravitational binding is less tight. An outgoing shock
may also lead to the explosive release of thermonuclear energy in
shock-heated matter.

The problem of supernova mechanisms is complex. Each of these
mechanisms has been the subject of detailed calculations, and many
of controversy. The problem is complicated by couplings among the
various mechanisms, because collapse may trigger an explosion, and
the possibly explosive release of thermonuclear energy may instead
lead to collapse.

Most of these mechanisms (the exceptions are pair instability
and perhaps the thermal disintegration of stable nuclei) require the
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accumulation of a degenerate core whose mass essentially equals
Mep, = 1.40M. If this core collapses without expelling or accreting
a significant amount of mass (which would require the expulsion of
the entire nondegenerate envelope), a neutron star will be formed
with mass Mgy. All measured neutron star masses are consistent
with this hypothesis.

The fact that supernovae are observed in a population of old
stars is itself interesting. In this population the minimum mass
(Mgp,) required for collapse or explosion poses a problem, for all
stars with M > 0.9M terminated their evolution in the distant
past. Only less massive stars have long enough lives on the main
sequence to be living, and dying, today. Mass transfer in binary
stars is the probable resolution of this problem. A degenerate dwarf
may perhaps accrete enough matter from its companion, presently
swelling as its core evolves, to bring the degenerate mass up to M¢gp,.
To do this it must avoid expelling the accreted material in nova out-
bursts (4.1.3), but this may be possible at high accretion rates, when
a steady luminous envelope may be formed instead of intermittent
outbursts.

It should be remembered that these three phenomena are dis-
tinct: a visible supernova, the violent end of a star, and the forma-
tion of a compact object (neutron star or black hole). The relations
among them are unclear. The supernova of 1054, which produced
a neutron star and the Crab nebula, was all three. Many other su-
pernovae appear not to have produced compact objects, and it is
possible that compact objects are sometimes produced without visi-
ble supernovae. Stars may perhaps explode without producing either
a supernova or a compact object. It is certain only that stars must
die to produce either of the other two phenomena.
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4.4 Pulsars

4.4.1 Phenomenology  Pulsars were an unexpected discovery

(Hewish, et al. 1968) by a radio telescope designed to study rapid
variations in the intensities of radio sources resulting from the refrac-
tion of radio waves in the turbulent interplanetary medium (inter-
planetary scintillation). At its low operating frequency (81.5 MHz)
large arrays of dipole antennas make a cheap and sensitive telescope.
Pulsars are relatively intense at these frequencies. Most importantly,
while conventional radio observations integrate the power received
from sources presumed to be steady in order to increase the ratio of
signal to noise, this instrument was designed and operated to detect
rapid variations of intensity. It is nearly a general rule that the most
interesting discoveries are made by the first instrument to perform
a new kind of observations, entering a new range of wavelengths, or
becoming sensitive to other properties of a signal (spectrum, tem-
poral variation, polarization, angular resolution, or statistics) which
were not previously observed.

Pulsars received their name because their radiation is pulsed
with a very regular period. Most of the periods observed are
~ 1 second, but they span the range 0.0015 — 4 seconds. Pulsars
are searched for and found as sources of pulsed radio radiation, par-
ticularly at low frequencies (rs 400 MHz), but a few of those with
shorter periods (5 0.1 second) also emit pulses at visible, X-ray, or
v-ray frequencies. Detailed models are very uncertain, but all of
these radiations require the motion of very energetic electrons (or
positrons) in strong magnetic fields.

Gold (1968) argued that the magnitude and stability of pulsar
periods could best be explained if they were rotating magnetized
neutron stars. The spin period of such a massive body would be lit-
tle affected by outside influences. Neutron stars are believed to have
crystalline outer layers, so that they should rotate as rigid bodies.
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Unless rapidly accreting, torques on them would be very small, mak-
ing their spin periods stable. The values of pulsar periods are too
short to be the spin or vibrational periods of degenerate dwarves, but
too long to be the vibrational periods of neutron stars. If magnetized,
with a magnetic field which is not azimuthally symmetric about the
spin axis, (for example, the field of a dipole moment not aligned
with the angular momentum vector), then any radiation process as-
sociated with the magnetic field should vary with the azimuthal an-
gle like a searchlight, and an observer will see a radiation intensity
pulsed with the rotational period. Such a rotating magnetized star
in vacuum will emit magnetic dipole radiation at its spin frequency
and will lose rotational energy, so that its spin period will slowly
but steadily increase. This prediction was soon confirmed, and this
model accepted.

The regularity of a pulsar period P is usually described by a
quality factor Q:

= . (4.4.1)

Measured values of () are in the range 102 — 10'°

, with typical val-
ues ~ 10 — 10'5. Pulsar rotation rates are therefore among the
most stable clocks in the universe, rivalled or exceeded only by the
excitation of metastable nuclear or hyperfine states. It is possible to
measure such large values of ) with clocks of lesser quality factors
because the ) of a clock is defined differently. Unlike a pulsar, the
mean frequency of a clock does not generally drift with time. Con-
sidered as an oscillator, a clock’s Q = w/I', where w is its angular
frequency and I its damping rate. () may be relatively small, but for
an atomic clock w may generally be regarded as absolutely constant.
If continuously and stably excited, a clock permits the measurement
of a mean frequency to an accuracy much greater than I'. In contrast,
a pulsar’s spin is continuously and monotonically slowing, so that in
the course of an extended period T' of observation its spin frequency
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Q) changes by a relatively large amount AQ/Q ~ T/(PQ) > T'/w.
Practical values of T/P are ~ 108 for typical pulsars, and ~ 10! for
those few with millisecond periods (those with the highest Q).

The instantaneous power radiated by each component of an os-

cillating magnetic dipole moment fi in vacuum is

dE 2l
dt  3e¢3°

(4.4.2)

For a dipole moment rotating at angular frequency €2, with angle «
between its spin axis and fi, the total time-averaged power is
dE 21120 sin? o
— )= IL—’ (4.4.3)
dt 3c3
where p is the magnitude of the dipole moment. For a neutron star
of radius R, the magnetic moment and the magnitude By of the field
at the magnetic equator are related by

1= BoR>. (4.4.4)

The radiated power is drawn from the kinetic energy of rotation.

It is an excellent approximation for all but the very fastest pulsar
(and probably accurate to ~ 10% even for it) to consider the rota-
tional flattening to be small, and to treat the moment-of-inertia ten-
sor as a constant scalar Z, which is estimated to be ~ 10%% gm cm?.

Then the rate of spin-down is given by

. dE
_IO0 = ( 2= 4.4.5
(G- (445)
or 2 P60M3 2
. 2BAR°Q° sin” «
Q=0 4.4,
3c3T (4.4.6)

From measured values of Q and €, using theoretical values of R and
7 for a neutron star, and taking sina ~ 1, By may be estimated. For
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most pulsars it is ~ 1012 gauss, but for a few (chiefly those with very
short spin periods) it is much lower, in one case <108 gauss. There
are strong observational selection effects, because a rapidly spinning
pulsar with a large field will soon slow down, and is therefore un-
likely to be observed. In the case of the Crab pulsar, surrounded by
a luminous supernova remnant filled with energetic electrons radi-
ating synchrotron radiation at frequencies from radio to X-ray, the
power (1038 —103? erg/sec) inferred from (4.4.5) is sufficient to sup-
ply the electrons if the spin energy is efficiently converted to particle
acceleration.

IfQis known, then it is possible to define a characteristic slowing

or spin-down time

Q

. 4.4.7
9] (4.4.7)

tsd =

The result (4.4.6) may be integrated to express the actual age i,
of a pulsar in terms of t,4, €2, and g, its spin frequency at birth.
However, it is better first to generalize (4.4.6) to the form

Qo —O", (4.4.8)

where n is called the braking index. If n is constant the age is

t, = ntizl ll — ({%)n_ll . (4.4.9)

It is apparent from (4.4.9) that the relation between the observed

tsq and the actual age t, depends on the pulsar’s unknown initial spin
. There are two limiting cases. If Q < Qg then t, = t5q/(n — 1),
while if the measured € is very close to 2y then t, < tgq. It is likely
that pulsar ages are widely distributed between these limits.

The age of a pulsar may be measured directly only if other in-
formation is available. In a few cases a pulsar is clearly associated
with a supernova remnant, and must have the same age. The best
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example of this is the Crab pulsar, born in the supernova of 1054.
Most pulsars are believed to be old enough (> 30,000 years) that
any supernova remnant is now undetectable, and it is possible that
some pulsars are born quietly, without either a visible supernova or
a remnant of expelled gas. It is also possible to make statistical esti-
mates of the mean age of pulsars based on their spatial distribution
within the Galaxy, their places of formation, and their velocities.
The resulting ages are ~ 3 x 10° years.

It is not known with what spins pulsars are born. If they were
to inherit the specific angular momentum of their progenitor stars
they would spin very rapidly, with periods < 0.001 sec. This angular
momentum is large enough to interfere with collapse to neutron star
densities, so that the rate of collapse would be limited by the rate
at which angular momentum is removed from the contracting stellar
core (in analogy with the formation of stars from rotating interstel-
lar clouds 3.2). However, neutron stars are expected to form from
the degenerate cores of giant stars. If approximately rigid rotation is
maintained within such a star (4.1.2) the specific angular momen-
tum of the core would be extremely small, and even when collapsed
to neutron star densities the spin period would be very much less
than that of pulsars. For pulsars the truth must lie between these
extremes, although some neutron stars may be born with very long
spin periods.

Some pulsars have empirical values of 54 much longer than the
ages estimated from their distribution within the Galaxy. These pul-
sars must have been born with nearly their observed periods (usually
~ 1 second), and will cease emitting (for reasons not well understood)
without significant change in their periods. In the case of the Crab
pulsar t;q =~ 2500 years, so that t, ~ tsq. Its initial period is un-
likely to have been very much shorter than its present value of 0.033
second, because there is no evidence for the large kinetic energy lost
by a very rapidly rotating neutron star, which would be expected to
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have observable effects on the supernova remnant. When its period
has lengthened to a more typical value ~ 1 second, €2 < €2y will be
satisfied. An unknown fraction of pulsars presently observed with
typical periods were similarly born with much shorter ones.

Application of (4.4.9) to the Crab pulsar shows that unless n was
significantly larger in the past than it is now, its initial period was
about half its present period, consistent with the energy argument.
We can conclude that pulsar periods at birth span at least the range
~ 0.01 — 1 second, but how they are distributed within this range is
uncertain.

A few pulsars have very short (1 — 10 milliseconds) spin periods
and low magnetic fields. It has been suggested that their rapid spins
resulted from accretion from a disc (4.2.2) long after their forma-
tion as more slowly rotating neutron stars. This is unproven, but it
may be that no pulsars are born with periods shorter than ~ 0.01
second. The existence of very short periods at birth would imply the
availability of a great deal of neutron star rotational energy, and the
possibility of efficient production of gravitational waves in the as-
pherical collapse which produced the rapidly rotating neutron star.

It is much more difficult to measure €} than €. Some pulsars
have irregular variations in Q, attributable either to fluctuations in
the relaxation of their interiors to the slowly declining €2, or to fluc-
tuations in their actual spin-down torque. A few pulsars also show
small impulsive increases in €2, called “glitches,” which briefly inter-
rupt the steady spin-down. These are attributed to sudden relaxation
of their structure, perhaps as a result of fracture of their solid crust
or of a sudden increase in its coupling to their superfluid interior.
For two pulsars € is large enough to be measured reliably. The mea-
surement is best expressed in terms of the braking index n, which
may be written:

09
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The observed values of n are 2.515 £ .005 for the Crab pulsar, and
2.83 + .03 for PSR1509-58 (Manchester, et al. 1985).

A value n = 3 might be expected from (4.4.6), but the smaller
observed values may be explained if sin« is increasing on roughly
the same time scale as ts3. Because sin a cannot increase beyond
1, this explanation would imply that as ©2/Q¢ — 0, n — 3. The
present significant deviation of n from 3 then suggests that for the
Crab pulsar g did not greatly exceed 2. This is consistent with the
energetic argument and with (4.4.9) evaluated for the empirical n,
which implies a spin period at birth of 0.019 second. Alternatively,
the vacuum magnetic dipole theory may be rejected as a quantitative
description of spindown. There are good theoretical reasons for doing
so (4.4.2), in which case the deviation of n from 3 may be attributed
to gradual changes in the electrodynamic structure of the pulsar’s
magnetosphere.

It has occasionally been suggested that rotating neutron stars
might emit gravitational quadrupole radiation (for which n = 5).
They can do so only if their mass distribution is not azimuthally
symmetric about their rotation axis. There is no reason to expect
such an asymmetry, because a rotating fluid body in equilibrium will
be azimuthally symmetric, and the mechanical strength of a neutron
star’s solid outer layers can support only very small asymmetries
against its gravity. There is no evidence of any gravitational radi-
ation produced by the spin of any pulsar. The orbital motion of a
pulsar (or any other mass) in a binary system is expected to produce
gravitational radiation, which has been observed and the theory ver-
ified for the binary system containing the pulsar PSR1913+416. The
pulsar makes this observation possible by providing an extraordinar-
ily accurate orbiting clock.

Very few pulsars (about 1% of those known) are observed to
have binary companions. In contrast, perhaps half of all stars are
binary. Two hypotheses may explain this fact, and it is likely both
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contribute. It is observed from their slow motion across the sky that
pulsars have large space velocities (the dispersion of each component
is &~ 120 km/sec; Lyne, et al. 1982), yet their distribution in space
is that of massive young stars which have much smaller velocities. It
is inferred that the event which formed the pulsar endowed it with
a recoil velocity. The observed velocities would have been sufficient
to expel the pulsar from a binary system, unless the orbital radius
was fairly small. Yet if a pulsar has a moderately close binary com-
panion it is likely to accrete. The accreted matter becomes ionized
and is a good electrical conductor, and would probably prevent the
development of the large electric fields (4.4.2) required to accelerate
energetic particles and produce pulsar emission. These two hypothe-
ses of recoil and plasma suppression of pulsar emission satisfactorily
(though qualitatively) explain the data. The observed binary pul-
sars have companions which are either of low mass and luminosity
or (PSR1913+416) are believed to be another neutron star. In either
case the rate of mass flow should be negligible.

The radio pulses emitted by pulsars have a very high brightness
temperature Tp, defined from the Planck function (1.7.13) as the
temperature of a black body source which produces the observed
flux density F:

F,c?
52
where hv < kpTp has been assumed. Using the pulse width At
to estimate the area of the emitting region A ~ (cAt)? leads to

kpT, = (4.4.11)

numerical estimates of Ty as high as ~ 102° °K, or kgT}, ~ 10?2 eV.

No black body can have such a temperature. FEmission by
individual energetic particles of energy FE can generally produce
kT, ~ FE, so this is also not a feasible explanation of the large
measured T3. Only collective or coherent processes are satisfactory.
The production of high brightness temperatures by the collective
motion of large numbers of electrons is a familiar phenomenon. For
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example, a dipole antenna radiating 1 KW into a 1 KHz bandwidth
at a frequency of 1 MHz has kg7, ~ 108 eV. In pulsars coherent
emission is probably the result of the bunching of radiating electrons
by a plasma instability.

Because pulsars, neutron stars, and supernova remnants are (at
least sometimes) born in the same events, it is of interest to compare
the birth rates of each. Of the several historic supernovae, only the
one of 1054 has an associated pulsar, that in the Crab nebula. It has
been suggested that other supernova remnants contain pulsars which
are not observed because their beam of radiation is never directed
toward us, and that therefore our counts of pulsars underestimate
their number by a factor of ~ 5 — 10. This is unlikely because the
Crab supernova remnant has a characteristic appearance, filled with
electrons accelerated by the pulsar and emitting synchrotron radi-
ation. Most other supernova remnants do not appear to have this
central source of very energetic electrons. Rather than most pulsars
being undetectable because of beaming, it is more likely that most
supernova remnants do not contain pulsars, and most supernovae do
not produce them. It is also possible that some pulsars are born
without a supernova or without a remnant of expanding gases.

4.4.2 Electrodynamics The model of pulsars as rotating magne-

tized neutron stars satisfactorily explains much of their phenomenol-
ogy, but needs further development to begin to explain their radia-
tion. Acceleration of relativistic particles is required to account for
the observed radiation at all frequencies, as well as the supply of
particles to the surrounding region so vividly observed in the Crab
nebula. These particles must also be bunched to explain the radio
frequency radiation, but this is not required for that at higher fre-
quencies, where the brightness temperatures are much less.
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The electrodynamics of a rotating magnetized neutron star is
a very difficult problem, as yet incompletely solved. Goldreich and
Julian (1969) developed its basis, and many authors have contributed
to its further and more controversial elaboration. The problem is
very complicated, and no solution is complete or free of difficulty. See
Michel (1982) for a review of the literature and numerous hypotheses.

Assume that the magnetic dipole moment is parallel (or anti-
parallel) to the angular velocity vector (. Such an aligned moment
cannot lead to pulsed radiation, but is a more tractable model of
the complex problem of a misaligned moment. The neutron star is
also assumed (with justification) to be a good electrical conductor,
so that in the frame of its rotating matter the electric field E'=0
(3.9.7). Expressing this in terms of the fields in an inertial frame

(3.9.8)
jo (QXT) x B =0, (4.4.12)

C

where (§ x 7)/c is the velocity vector of the rotating matter. Then
E = —V® determines the electrostatic potential ® within the neu-
tron star. If the neutron star were surrounded by a perfect vacuum
® could be calculated in the vacuum region.

Any surface currents are likely to be dissipated by resistivity in
the outermost layers of the neutron star, so that B just inside the
star is essentially the same as the assumed dipole field outside, which
in spherical coordinates is

- BoR®, ~
B = 3 (27 cosf + OsinB). (4.4.13)
Then (4.4.12) yields at r = R:
- ByR2sin@ -
E= 20T hsing + 20 cosd), (4.4.14)

Cc

where § has been taken to be directed along the § = 0 axis. The
tangential component of E must be continuous across the neutron
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star surface. This is sufficient to determine ® (up to a constant) by
integrating in 0:

R2Q)
d(r=R) = (sin? 6 + C). (4.4.15)
c
In the vacuum outside the star ® is determined by Laplace’s
equation V2® = 0, with (4.4.15) as a boundary condition. The an-
gular dependence is a Legendre polynomial, which must be of degree
2 to match (4.4.15). Then

5
O(r,0) = B(;fCQ (sin2 6 — %) +C'. (4.4.16)

The electric field is

— B0R5Q ~ .2 2 A .
E(r,0) = vy [37" <sm 6 — §) — 26 sin 6 cos 0} , o (4.4.17)
and AB2REQ
E-B= —# cos> 6. (4.4.18)
ric

Within the neutron star E - B = 0 (4.4.12). In order that the
component of E normal to the surface be discontinuous (as is implied
by the discontinuity in E-E), there must be a surface charge. Within
this surface charge layer E- B will vary continuously, and the charge
will be freely accelerated by the component of E parallel to B. The
result (4.4.18) shows that (except at the magnetic equator) this com-
ponent is not zero, and in fact is comparable in magnitude to |E |.
For the usual pulsar parameters (Bg ~ 10'? gauss, Q R 1 sec™!) the
electrostatic force on a charged particle will be many orders of mag-
nitude greater than that of gravity, so that any free charges present
will be accelerated and will fill a magnetosphere with plasma. This
plasma will be a source of charge and current, invalidating the vac-
uum results (4.4.16) — (4.4.18).
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The net charge density required to reduce E - B to zero is given
by
_V-E
Pe = “An

__b-9 (4.4.19)

_ ByR*Q
~ 2mr3e
where E is taken from (4.4.12), B from (4.4.13), and V x B = 0
because B is the field of a static dipole (expected to be a good ap-

(sin®§ — 2 cos? ),

proximation for r < ¢/). If the magnetosphere is filled with this
net charge density it is electrodynamically equivalent to the stellar
interior. The electric field (4.4.12) is just that induced by (and suf-
ficient to maintain) corotation of the plasma at the spin frequency
of the neutron star. If (4.4.12) and (4.4.19) were to hold everywhere
around a pulsar it would not accelerate particles or emit radiation.

The particle density implied by (4.4.19) is very small, corre-
sponding near the surface of a typical pulsar to ~ 10! cm=3. This
is ~ 10% times less than the particle density near the neutron star
surface in a typical accretion flow. If there is any accretion, even at
a rate much too low to produce observable luminosity, a very small
polarization of the accreting plasma is sufficient to satisfy the con-
dition E - B = 0, to “short out” the electric field, and to prevent
particle acceleration. Such objects cannot radiate as pulsars. This
polarization is necessary to justify the description of plasma flow by
the equations of neutral fluid magnetohydrodynamics (3.9), and is
present in most astrophysical flows.

The magnetic field lines may be divided into two classes. The
closed field lines do not extend further than a distance ¢/, called the
corotation radius (or the radius of the speed of light cylinder), from
the neutron star, and return to the opposite magnetic hemisphere.
Open field lines originate near the magnetic poles and extend to
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distances > ¢/, corresponding to the wave zone of a rotating dipole
in vacuum, and bend back only at extremely large distances where
they encounter the fields and stress of the supernova remnant or
the interstellar medium. Only field lines crossing the neutron star
surface within an angle 6y of the magnetic pole will be open, where
fo =~ /QR/c. Because charged particles are trapped on magnetic
field lines, and are therefore not easily lost from closed field lines,
the closed field lines are believed to readily fill with the net charge
density (4.4.19), and to form a corotating magnetosphere of little
interest.

Charges accelerated from the neutron star surface on the open
field lines may freely stream out to the supernova remnant. It is often
assumed that everywhere (except for a narrow accelerating region)
on these field lines E - B = 0, so that they are equipotentials. The
net charge density (4.4.19) might suggest that particles of only one
sign of charge are present on the open field lines, because they all
begin near the poles where sinf < cosf. Although p. has a single
sign in these polar regions, particles of both signs of charge must
be lost in equal numbers in order that the pulsar not accumulate a
large net charge (the loss of a very few particles, if all of the same
sign of charge, would produce a monopole potential sufficient to stop
further loss).

If By > 0 (B-Q > 0) the surface potential (4.4.15) has minima
at 6 = 0 and at § = . Electrons are therefore accelerated along field
lines near the axis. Positively charged particles are accelerated along
field lines which leave the star at 6 close to 6y and m — 6y, where
the potential achieves its highest open field line value. If By < 0
(E Q< 0) the positively charged particles flow along the axis, and
the negatively charged particles near 6y and m—6y. The current loop
is closed by currents in the interior of the neutron star and in the
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supernova remnant. The total potential available for acceleration is

_ BoR*Qsin’ 6,
(&

302
~ BOR2 Q (4.4.20)
C

Ad

B
~ 1.3 x 1013P—122 Volts,

where Bis = By/(10' gauss) and P is the spin period in seconds.
This gives the maximum energy to which a particle may be acceler-
ated. Depending on how this potential drop is distributed along the
field line, and on radiative losses (which may be large for electrons
and positrons), the actual particle energy may be much less.

If an abundant supply of charged particles of both signs were
available for acceleration the accelerating potential would be reduced
by the plasma space charge (4.4.19), while if none were available the
accelerating potential would have its maximum vacuum value. Pulsar
magnetospheres must be between these limiting cases.

The magnetized surfaces of neutron stars are believed to be
strongly cohesive, because the magnetic field confines the electronic
wave functions (in the two dimensions normal to the field), and thus
increases their Coulomb binding to the nuclei (which are expected to
be Fe in a neutron star surface). The matter is estimated to reach
zero pressure at a density (which depends on the magnetic field)
p ~ 10* gm/cm?3, and therefore to resemble a solid metal rather than
a plasma. The energies required to detach electrons and ions are
quantitatively uncertain, but probably of the order of kilovolts (much
greater than surface thermal energies), and substantially larger for
nuclei than for electrons. The supply of charged particles from such
a surface is very uncertain, and may be difficult. It is worth noting
that ® (4.4.16), E (4.4.17), and p, (4.4.19) depend on the sign of
By (the sign of B. Q) Because the difficulties of removing ions and
electrons from the surface differ, it may be that neutron stars with
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different signs of B - Q) have different properties. Conceivably, one
sign leads to a pulsar and the other to some other object, perhaps a
~y-ray source.

If no particles are available to be accelerated there can be no ra-
diation. Sturrock (1971) and Ruderman and Sutherland (1975) have
suggested a solution to this problem. A ~-ray of energy E > 2m,c?
can create an electron-positron pair in a strong magnetic field. With-
out a field this process could not simultaneously conserve energy and
momentum, but a strong field can take up momentum and permit one
photon pair creation (similarly, one photon annihilation may occur,

0!3 gauss).

and is the dominant pair annihilation process for B > 1
In the intense electric field (4.4.17) both electrons and positrons are
rapidly accelerated along magnetic field lines. Because the field lines
are curved the particles are also accelerated in a direction normal
to their velocity and radiate many photons (the radiation resulting
from their acceleration parallel to B is negligible). At sufficiently
high energy this curvature radiation may itself produce pairs. The
result is a multiplication of the y-ray and charged particle density,
which continues until the accelerating potential is discharged. The
initial y-ray may have a distant astronomical origin, if no local source
is present. It has been suggested that a neutron star ceases to be a
pulsar when its accelerating electric field drops below the minimum
necessary for vacuum breakdown by this process.

A rough dimensional argument makes it possible to estimate
the torque on the star. Near the stellar surface the charge density
pe (4.4.19), combined with relativistic acceleration, implies a limiting
current density ~ p.c which can be accelerated electrostatically. The
area of surface through which this current density flows is ~ R263,
implying a total current

J ~ ByR*Q0?

4.4.21
~ BoR*Q?/c. ( )
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This current exerts a force on the star (and vice versa) of J x B/c
per unit length. It extends a length ~ R6fy under the polar cap, and
is a similar distance from the rotation axis. The magnitude of the
resulting torque is

~ jBO (R00)2

Cc
4.4.22
B3RSQ? (4.4.22)

c3

N

This torque leads to spin-down at the rate

. B2RQ3
Q~ —— a7 (4.4.23)
which is comparable to the vacuum radiation torque on an oblique
dipole moment (4.4.6). The numerical coefficients in these expres-
sions depend on the detailed electrodynamic structure of the magne-
tosphere, and in particular on the supply of charged particles, and
may change with time. They are usually assumed to be of order
unity, but this is not proven, and could be very much less for a pul-
sar whose magnetosphere is starved of particles. The vacuum torque
may be estimated by a related argument, by considering the radiative
boundary conditions at the speed of light cylinder.

The power required to accelerate the charged particles is drawn
from the neutron star’s rotational energy, a configuration known as a
unipolar (or homopolar) generator. The circuit potential is the power
divided by the current A® ~ N/ J, which agrees with (4.4.20). The
impedance A®/J ~ 1/¢, which is characteristic of free space and
radiation boundary conditions. If the pulsar is starved of particles
J is much less and the impedance is much greater. Most of the
potential drop may be across a vacuum gap akin to the brushes of a

conventional generator, and which may limit the flow of current.
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4.5 Gamma-Ray Bursts

4.5.1 Phenomenology = Gamma-ray bursts are rare and unpre-

dictable events. Like pulsars, they were unanticipated, and were
found when a new class of instrument, designed to perform another
novel task, began to collect data. Gamma-ray bursts were discovered
(Klebesadel, et al. 1973) by satellite-borne instruments designed to
search for a different rare and unpredictable event—clandestine nu-
clear explosions in space, none of which have ever been observed.
Such instruments must be sensitive at all times to radiation arriv-
ing from a large fraction of the celestial sphere. Because ~y-rays are
penetrating it is possible to build such an instrument, which does
not focus or collimate the radiation, but only measures the energy
deposited in an absorbing medium (a scintillator or electronic detec-
tor). Several symposia (Lingenfelter, et al. 1982; Burns, et al. 1983;
Woosley 1984) review observations and theory of v-ray bursts.

Gamma-ray bursts are a very diverse class of events. They are
observed as sources of fairly low energy y-rays, with most of their en-
ergy typically between 100 KeV and 1 MeV, although in many cases
photons are detected at energies up to ~ 10 MeV. These photon
energies are orders of magnitude lower that those at which some ac-
creting neutron stars (4.2.4) and pulsars (4.4) are observed. Burst
spectra are usually featureless, often roughly (but not closely) ap-
proximating power laws. In a few cases spectral features have been
reported, either at photon energies of tens of KeV, where they have
been suggested to be electron cyclotron resonance lines in strong
(102 — 10'3 gauss) magnetic fields, or near 400 — 500 KeV, where
they may result from positron annihilation, possibly redshifted by
a neutron star’s gravitational field. The interpretation of these re-
ported features is controversial.

A typical y-ray burst lasts for tens of seconds, but observed du-

rations range from ~ 0.1 second to several minutes. During this pe-
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riod its intensity may fluctuate erratically, with many narrow peaks
whose widths are apparently unresolved by existing instruments.

The directions from which v-ray bursts come appear to be
isotropically distributed on the sky. Because their detectors have a
nearly isotropic response, the direction of the source of radiation can
be determined only by comparing the times of arrival of the y-rays at
several detectors distributed throughout the Solar System. The brief
duration and rapid fluctuations of «-ray bursts make this possible,
but for only a few bursts is an accurate position known. Studies of
the few hundred observed bursts, for most of which positional infor-
mation is only rough, show that (with a very few exceptions) they
are not correlated or associated with any other class of astronomical
object. With similarly few exceptions, there is no evidence of indi-
vidual sources emitting bursts more than once in the nearly twenty
years of data now available.

Perhaps ~ 10 «-ray bursts are observed each year with flu-
ence (the integral of the flux over time) ~ 10~* erg/cm?. This
corresponds to a mean flux passing through the Galactic disc of
~ 107! erg/cm?sec. If this flux passes through the entire disc the
mean Galactic luminosity in y-ray bursts is ~ 103 erg/sec, a result
which is not sensitive to the very uncertain distance and luminosity
of individual bursts.

The Galactic y-ray burst luminosity is remarkably small. The
corresponding stellar visible luminosity is ~ 10%* erg/sec, that in
X-rays is ~ 1040 erg/sec, and that in cosmic rays & 104! erg/sec.
The low mean luminosity of y-ray bursts may make them harder to
understand, because many possible processes will be able to supply
the required power, including rare variants of more familiar processes,
and because the incidental effects of the release of such little energy
are not likely to be conspicuous clues.

These problems are compounded by the scarcity of accurate co-
ordinates on the sky. Not only is it impossible to anticipate a y-ray
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burst in order to watch its source in some other wavelength band, but
in only a few cases has it been possible even to examine afterwards
the direction whence it came.

The distances of y-ray bursts are unknown. In principle, the dis-
tribution of their directions indicates their spatial distribution within
the Galaxy, supposing their sources to be Galactic and distributed in
a manner similar to that of some more familiar class of objects (if they
are extragalactic their luminosities are much higher, and the prob-
lems of explaining them more severe). There is not yet evidence for
anisotropy in their distribution on the sky, and therefore no evidence
for spatial structure resembling the Galactic disc. If it is nonetheless
assumed that the sources of y-ray bursts are distributed like the stars
in the Galactic disc, then the failure to observe anisotropy imples that
the sources of the observed bursts are closer to us (5 100 parsecs)
than the thickness of the Galactic disc. Such nearby sources would
produce an isotropic distribution of arrival directions, even though
the more distant sources are anisotropically distributed. The data
are equally consistent with any other geometry in which the sources
of the observed bursts are distributed isotropically around us, such
as a very large halo enveloping the entire Galaxy, or uniform distri-
bution throughout the Universe.

In most populations of astronomical objects the fainter members
are much more numerous than the brighter ones, with the number
N observed above a threshold S varying as

N o §4/2 (4.5.1)

if the objects are distributed homogeneously throughout a space of d
dimensions. For a uniform distribution in space d = 3, in a flat sheet
d = 2, and in a line d = 1. This scaling applies to any quantity S
which has an inverse square law dependence on distance, and follows
directly from the fact that the volume contained within a distance
r varies o< r%. S is typically a flux density or intensity of radiation,
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but could be the fluence. For vy-ray bursts it is a more complicated
function of these quantities, because instrumental thresholds may
depend on a complex manner on the variation of the flux with time.
The dependence of N on § for the fainter v-ray bursts implies d N 2,
which can be explained only if their sources are distributed in a flat
sheet (Galactic disc) or even a line (spiral arm). Such small values
of d are obtained only if typical distances exceed the thickness of the
Galactic disc (or spiral arm), which would contradict the observation
of isotropy. This discrepancy depends only on geometry, and not on
any models of the physics of y-ray bursts.

There are at least two distinct possible resolutions of the discrep-
ancy between the isotropy and the flux distribution of y-ray bursts.
Conceivably the experiments are undercounting weak bursts, or fail-
ing to detect an actual anisotropy. It is unfair and probably unjus-
tified for a theoretician (like myself) to suggest that experimenters
do not understand their instruments. Alternatively, the sources may
be distributed through a volume of finite extent, with most bursts
anywhere in this volume luminous enough to be observed. The limit
in which all bursts are observed above a threshold Sy corresponds
to d = 0 (a point distribution) in (4.5.1). To explain the observed
isotropy we must be near the center of this volume (a Ptolemaic -
ray burst universe; see Cline in Woosley 1984). If this is correct, the
sources must either be at cosmological distances, or be distributed
in an extended halo about our Galaxy, or be evidence of a previously
unsuspected Earth-centered spherical distribution. Of these possi-
bilities, a Galactic halo is the least implausible. The halo’s radius
must be several times our distance (=~ 10,000 parsecs ~ 3 x 10?2 c¢m)
from the Galactic center. It is believed (based on dynamical mea-
surements) that the mass distributions of many galaxies similarly
extend far beyond their visible radii. It must then also be that y-ray
burst statistics are not dominated by nearby events of low luminosity,
which would tend to produce a d = 3 distribution of S.
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In a very few cases additional facts are known about individual
~-ray bursts for which accurate coordinates have permitted further
study. Schaefer (1981) discovered that in a few cases the source of
a y-ray burst is also the source of a brief flash of visible light, typ-
ically with ~ 10~3 of the fluence of a ~y-ray burst. He made this
discovery by examining the extensive archives of photographs ob-
tained with small telescopes for the long-term monitoring of variable
stars, which are the classical astronomical data closest (but not close)
to a continuous monitoring of the sky. Because these photographs
were largely obtained prior to the beginning of vy-ray observations,
there was no direct evidence that the y-ray and visible burst emission
were in fact simultaneous. A given 7y-ray burst source produces vis-
ible flashes at a rate of ~ 1/year (Schaefer and Cline 1985). This is
apparently higher than the repetition rate of v-ray bursts, but each
rate is dependent on the detection threshold in its spectral region,
and therefore need not be the same if bursts from a given source vary
in intensity.

A ~-ray burst observed on March 5, 1979 is famous for several
reasons (Cline 1980). Its intensity was very high at its peak, rose ex-
traordinarily rapidly, and later oscillated periodically. Observations
by instruments on nine separate spacecraft produced an abundance
of data, and provided accurate coordinates on the sky. Its position
coincides with that of a young supernova remnant located in the
Large Magellanic Cloud (LMC), a small galaxy which is a satellite
of our own.

It is not possible to make an unbiased estimate of the statistical
significance of this positional coincidence, because the hypothesis to
be tested was only defined after the coincidence was noted. Many
examples of spuriously significant positional coincidences exist in as-
tronomy (Field, et al. 1973). If this bias is ignored the identification
of the y-ray burst with the supernova remnant appears unlikely to
be accidental. Inspection of a photograph of the sky with the burst’s
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position lying atop the small image of the supernova remnant has
persuaded many, but not all, astrophysicists that they must be asso-
ciated. If accepted, this association provides the only measurement
of the distance to a 7y-ray burst, because the distance to the LMC is
well determined by classical astronomical methods (studies of pulsat-
ing variable stars with calibrated luminosities) to be 55,000 parsecs.
From this distance estimate, an assumption of isotropic emission,
and the observed flux and fluence, the energy released in the burst

is calculated to be ~ 4 x 10%**

erg, and the peak luminosity, which
lasted ~ 0.1 second, was ~ 5 x 10% erg/sec (about 10 times the
luminosity of the whole Galaxy!).

The «-ray burst of March 5, 1979 had a number of other interest-
ing properties. Because it was identified with a supernova remnant,
it was natural to suggest that it was produced by a compact remnant
of stellar collapse, presumably a neutron star. Although its flux had
a very brief peak, it was observed for several minutes afterward, and
clearly shows a regular variation with a period of 8 seconds. In anal-
ogy to pulsars and accreting neutron stars, this is interpreted as the
rotation period of a magnetized neutron star, whose intensity of ra-
diation or direction of emission varies with azimuthal angle about its
rotation axis. The inference of a neutron star is further supported by
the observation of a spectral feature at a photon energy of 420 KeV,
which is consistent with the 511 KeV photons produced by the an-
nihilation of positrons, redshifted by the gravitational potential of
a neutron star. The radiated intensity rose extremely rapidly, in a
time less than the experimental resolution of 2 x 10~* second, im-
plying (1.6.7) an emission region whose size was < 6 x 108 cm, again
indicating a neutron star (or black hole, but this cannot explain the
other observations).

Is the March 5, 1979 ~-ray burst representative of y-ray bursts
in general? There are obvious differences and unique features in

the time dependence of its flux and in its spectrum, but some of
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these may be attributed to the fact that its great intensity and the
large number of functioning detectors made it unusually well studied.
Because bursts are such a heterogeneous class of events, its observed
properties may not be any more atypical than those of many other
bursts. If most other bursts are at distances less than the thickness
of the Galactic disc then the March 5, 1979 event was extraordinary,
because its luminosity would then be ~ 105 — 10° times greater than
that of a typical burst. It is hard to reconcile this interpretation with
the absence of bursts similar to that of March 5, 1979 but occurring
in our own Galaxy, which contains ~ 10 times the mass of the LMC,
and might therefore be expected to have ~ 10 times as many such
events. If, instead, bursts in general are distributed throughout a
very large halo of our Galaxy, extending to distances comparable to
that of the LMC, then the March 5, 1979 burst would be explicable
as an unusually (but not extraordinarily) luminous member of a class
of events with a broad distribution of luminosities.

4.5.2 Models There is no agreement on even the outline of a model
of y-ray bursts, beyond a consensus that most of the evidence points
to magnetic neutron stars. Because their distances are unknown, the
luminosity which must be explained is uncertain by several orders of
magnitude, ranging from ~ 1037 erg/sec for a typical burst within
the Galactic disc to ~ 10% erg/sec for the peak luminosity of the
burst attributed to the LMC. A distribution throughout a Galactic
halo would be consistent with the high space velocities of pulsars
(4.4) if most «y-ray burst sources were pulsars R 108 years ago (the
time required to fill the halo from the birthplace of pulsars in the
Galactic disc). Such a halo distribution would imply that most bursts
have luminosities and distances approaching those of the burst of
March 5, 1979, if its source was in the LMC.
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The first task of the modeller is to determine the physical pro-
cesses which produce the observed radiation. The spectrum of the -
rays is clearly not that of black body radiation, so it provides evidence
of the spectral emissivity of the emission process. Bremsstrahlung
(2.6.1) and synchrotron radiation (2.6.2) by moderately relativistic
electrons (E ~ 1 — 10 MeV) in neutron star magnetic fields have
been suggested, and each is capable of approximating the observed
spectrum. In intense magnetic fields and low densities of matter
(conditions expected near neutron stars) synchrotron radiation is a
much more rapid process, and it is a more popular explanation. Its
chief difficulty is that the process which accelerates the radiating
electrons (or positrons) must impart to them a component of mo-
mentum perpendicular to the magnetic field, which is very hard to
do in intense fields. Curvature radiation by very energetic particles
moving parallel to the field lines has been considered, as for pul-
sars, and by producing pairs in the field it may also be a source of
moderately relativistic particles with transverse momenta which may
radiate synchrotron radiation.

The reported annihilation line radiation poses special problems.
The observation of a single gravitational redshift implies that it is
produced at a neutron star surface, rather than throughout a mag-
netosphere. The fact that the line is narrow enough even to be
recognized as such implies that it is produced by positrons stopped
in relatively cool matter (so that the Doppler broadening is small).
It also must not have undergone Compton scattering, which would
broaden it, an argument which places an upper bound on the inte-
gral of the electron density along paths between the annihilation line
source and the observer. Combining this condition with the den-
sity required to produce the inferred annihilation rate implies that
the line must originate in thin dense sheets or layers of pair plasma,
perhaps resembling the auroral sheets produced when fast charged
particles enter the Earth’s atmosphere from its magnetosphere.
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If the distances to «-ray bursts are more than the thickness of
the Galactic disc (as would be true by a large factor for a burst
in the LMC), then their luminosities exceed the Eddington limit
(1.11.6), and the outward force of radiation pressure on their plasma
exceeds the attraction of gravity. If the radiating plasma is composed
of electron-positron pairs rather than electrons and ions then the
electron scattering opacity (per gram) is greater than that of ordinary
matter by a factor ~ m,/m., and Lg becomes

_ ArcGMm,
0 Oes
_ 3GMmdc®
B 2et
M
=T7x 1034M—®erg/sec,

(4.5.2)

which is almost certainly less than the luminosity of y-ray bursts.
This limit need not constrain the luminosity of y-ray bursts because
the magnetic field of a neutron star, anchored to currents within its
interior, is strong enough to confine the radiating plasma.

The recorded visible outbursts from the sources of y-ray bursts
pose yet another problem. It is natural to ascribe them to radiation
by a binary companion star, a familiar phenomenon in high energy
astrophysics. This star’s surface would be illuminated and heated
by ~-rays, and would reradiate its absorbed energy in visible and
ultraviolet light, a process which is known from binary X-ray sources.
Searches for companion stars when the source is not radiating ~y-rays
have shown that such stars, if present, must be very faint. If the -
ray burst sources are close (within the Galactic disc), this establishes
that any companion stars must have such low luminosity that they
cannot be burning hydrogen. If the bursts come from a Galactic halo
a companion star would be much harder to detect, but the inferred
visible luminosity during outburst would be very high.
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The ratio of the visible luminosity during outburst to that in
the dormant state is at least 10, which is hard to explain as the
consequence of the heating of any black body which has a stellar
surface temperature when dormant. In one alternative model the vis-
ible radiation is produced nonthermally by energetic particles within
the pulsar magnetosphere (synchrotron radiation, curvature radia-
tion, and plasma processes are each possible explanations). There
is no direct evidence that the visible and v-ray bursts are actually
simultaneous, and in another alternative model the visible bursts are
produced by a binary companion independently of the y-ray bursts.

The observation of photons with energy F R 1MeVisa problem
if the burst sources are as distant as the Galactic halo or the LMC.

Two photons may produce an electron-positron pair
Y+ —et +e” (4.5.3)
if the photon energies E; and Ej satisfy the kinematic threshold

Ey Es 2
> 4.5.4
(mec2> (mecz) ~ 1—cosf’ ( )

where 6 is the angle between the ~-ray directions. The cross-section

condition

04~ has a peak value of a few tenths of o5, which is achieved if the
threshold condition is exceeded by a factor ~ 2. Near the surface of
a body of radius R which radiates isotropically the y-ray directions
will be distributed over 27 steradians. The requirement that y-rays
with E R 1 MeV escape freely implies that their density n, satisfy

Ny R S 1. (4.5.5)
This condition may be rewritten in terms of the luminosity in ~y-rays
of this energy L. ~ 47 R*m.c*n.,c/3:
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where Ly is defined in (4.5.2). The factor in parentheses is about 5
for neutron stars.

This limit on the luminosity of a source of MeV ~-rays is numer-
ically much smaller than Lg, and has been used to argue that the
sources of y-ray bursts must be at relatively small distances (typi-
cally <100 parsecs, but depending on assumptions or measurements
of the source geometry, the shape of the spectrum, and the angu-
lar distribution of radiation). It cannot be avoided by invoking a
confining magnetic field, but can be in other ways. The 7y-rays lost
by (4.5.3) will be recovered when the pairs annihilate, although re-
peated cycles of pair production and annihilation will gradually shift
the spectrum to lower photon energies because of the influence of
processes like et +e” = y+y+yand y+vy et +e + 7.

The pair production threshold (4.5.4) is very high for collimated
radiation, which may be produced in several ways. Radiation emit-
ted by a spherical surface becomes geometrically collimated as it
flows outward. Even a few radii from the source all rays are confined
within a narrow bundle, and the threshold (4.5.4) is much higher
than at the surface. It is possible that the y-ray burst source re-
gion has a complex structure, with the lower energy ~y-rays produced
near the neutron star, and the more energetic y-rays escaping only if
produced at higher altitudes, and directed outwards. The radiation
of collimated relativistic particles, such as the curvature radiation
of particles moving outward on magnetic field lines, is intrinsically
collimated. The bound (4.5.6) should therefore not be uncritically as-
sumed to constrain y-ray burst luminosities and distances, although
the construction of models which exceed it by large factors would re-
quire a detailed knowledge of the particle acceleration and radiation
processes throughout the magnetosphere.

The source of energy for y-ray bursts is also unknown. Three
models have been investigated. In the first model the energy is ac-
cretional, and its sudden release is attributed to the infall of a solid
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object (comet or asteroid) onto a neutron star, or to an instability in
the accretion of plasma. The strength of this model is that accretion
certainly takes place, although the rate of accretion of solid bodies is
uncertain and probably low. Its weakness is that we observe accre-
tion onto neutron stars in the luminous X-ray sources (4.2.1), where
it produces X-rays of ~ 1—30 KeV energy, quite unlike the spectrum
observed for y-ray bursts. Matter suddenly accreted onto a neutron
star is unlikely to be confined by a magnetic field, having just fallen
from outside, so that the emergent luminosity should satisfy L < L.
This is consistent with the fluxes observed from <v-ray bursts if
their sources are within the Galactic disc, but not if they are dis-
tributed throughout a Galactic halo. The rapid rise of the flux of
the March 5, 1979 burst leads to a similar conclusion, even if no as-
sumption is made about its mass. If its energy was accretional (4.7.1)
implies that L < 103° erg/sec, requiring a distance ~ 100 parsecs,
well within the Galactic disc rather than in the LMC.

A second model uses the thermonuclear energy contained in mat-
ter accreted onto neutron stars. This energy is available, because
matter is known to accrete onto neutron stars and calculations indi-
cate that nuclear burning will occur and will produce thermonuclear
runaways. The difficulty with these models is that thermonuclear en-
ergy release on neutron stars occurs at high optical depths, so that
the power will be radiated from the surface with roughly a black
body spectrum. This is a satisfactory model of X-ray bursts (4.2.3),
but therefore has difficulty accounting for the very different spectrum
observed for v-ray bursts. It would predict a smooth variation of lu-
minosity with time in a burst, with only one or two maxima, rather
than the very irregular behavior observed. It has difficulty explaining
the apparent frequency (Schaefer and Cline 1985) of visible bursts
from ~-ray burst sources without evidence of a binary companion to
supply a high rate of accretion. It predicts a mean accretional X-ray
luminosity ~ 100 times larger than the mean ~y-ray burst luminosity,
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which has not been observed.

A third model describes «y-ray bursts as neutron star analogues of
Solar flares, releasing magnetostatic energy in optically thin regions
above the surface and accelerating relativistic particles there. This
model is suggested by the observed irregular variation of luminosity
with time within a burst, and the extremely rapid rise sometimes ob-
served. It is consistent with the observed spectrum, and may provide
a nonthermal explanation of the optical bursts, although the model
is not well enough understood to have predicted either. Its chief
difficulty is that it is not possible to say why, when, or where such
flares should take place. It is also difficult to store enough energy
in a neutron star’s magnetosphere, and to convert it suddenly and
efficiently to the acceleration of particles of the required energy. It
may be necessary to regenerate the magnetospheric energy, perhaps
from the differential rotation of a neutron star’s superfluid interior,
but there is little evidence for the existence of a significant reservoir
of energy. There is also no observed correlation between y-ray bursts
and pulsar glitches, which in this model might be related events.

The observations which offer the most promise of clarifying this
muddy picture are the monitoring of the sky for fast visible tran-
sients (see articles by Ricker, et al. and Teegarden, et al. in Woosley
1984). These observations may also aid the understanding of novae
and supernovae, as well as other transient astronomical events. The
simultaneous observation of a visible and a 7y-ray burst will immedi-
ately decide whether the visible radiation is y-ray energy absorbed
and reradiated by a binary companion star, and will thus demon-
strate or exclude the presence of such a star as a source of matter
for accretion. Nonthermal visible radiation would have a time de-
pendence very different from that of reradiation (which would be the
convolution of the y-ray power with a geometrical time delay and
the thermal response of the heated stellar atmosphere), and might
also be strongly linearly polarized. If the visible burst is reradia-
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tion, comparison of the visible and y-ray bursts will provide detailed
geometrical information about the binary system.

4.6 Accreting Black Holes

Black holes have been the subject of extensive research since the early
days of general relativity, and their properties have been predicted
in great detail. With no nearby black hole available for experimen-
tation it has not been possible to test these predictions, so relativists
have watched with great interest the astronomical search for black
holes. Isolated black holes are expected to be nearly undetectable,
and most interest has concentrated on accreting black holes. These
should be ideal examples of accretion flows (3.6, 3.7), because there
is no stellar surface to add its own contribution to the radiation, or
stellar magnetic field to interfere with the flow. Unfortunately, this
means that an accreting black hole has no predicted characteristic
signature (unlike the rotation period of a magnetic neutron star, or
the X-ray bursts emitted by thermonuclear energy release on other
neutron stars). The properties of its radiation are largely determined
by the hydrodynamics of the accretion flow rather than any exotic
relativistic properties of the black hole. This has disappointed rela-
tivists in two ways: it has been difficult even to identify black holes,
and once identified observations have provided information about
accretion hydrodynamics rather than about relativity.

Because they have no characteristic signature, all accepted infer-
ences of black holes have been based on a measurement of the mass
of a candidate object in a binary stellar system. These candidates
are usually luminous sources of X-rays, which are attributed to an
accretion flow into a deep gravitational potential well. In order to
rule out a neutron star or a degenerate dwarf the mass, determined
from Newton’s laws applied to the orbital motion of the companion
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star, must exceed Mcp, and ME; (1.12). Because M¢p, = 1.40Mg
and M7; is believed with some confidence to be < 3M, the gen-
erally accepted criterion for the identification of a black hole is the
observation of a compact object whose mass safely exceeds 3M.

A black hole which is not accreting will not attract attention
to itself as an X-ray source. The existence of such a black hole
could be inferred from the orbital motion of a binary companion
star, but without X-ray emission it also would be necessary to rule
out the possibility of its being an ordinary massive star. Such stars
are generally very luminous (1.11), and thus easy to exclude if their
expected luminosity is not observed, but a skeptic might suggest that
the star is present but subluminous because of peculiarities in its
evolution (not implausible in a close binary system), or because it is
cloaked by dust. At present, no such identifications of non-accreting
black holes are generally accepted.

The first, and for many years the only, accepted black hole iden-
tification was the X-ray source Cygnus X-1. Its X-ray properties are
very complex. Two distinct states are observed, with different spec-
tra and luminosities. Simple theories of disc accretion (3.6) predict
that the characteristic temperature (3.6.12) of the inner parts of a
disc radiating as a black body should vary o MY4M~1/2 50 that an
accreting black hole would be predicted to have a somewhat softer
(lower photon energy) spectrum than that of an accreting neutron
star of comparable accretion rate and luminosity. The X-ray spec-
trum of Cygnus X-1 is instead observed to be much harder, with
abundant radiation at photon energies ~ 100 KeV. The simple the-
ory describes a steady disc, but the flux from Cygnus X-1 is observed
to vary substantially in much less than a second. Accretion onto
Cygnus X-1 probably takes place from a wind (produced by its lu-
minous binary companion star) rather than by Roche lobe overflow,
and it is possible that there is no disc. Alternatively, the direction
of disc angular momentum may vary, which will affect its properties
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if the black hole also has angular momentum.

Shapiro, et al. (1976) have argued that the observations of
Cygnus X-1 are consistent with more complex models of accretion
discs, in which the emitting matter is very hot and optically thin.
These models can account for many of its observed properties, but
it is not clear why some accretion discs should have this structure
while others do not.

It has been suggested that very massive black holes might be
found at the centers of globular clusters, galaxies, and quasars. The
masses suggested have ranged from ~ 103Mg to ~ 1019Mg, very
roughly in proportion to the mass of the entire system (in order to
avoid large disturbances to the stellar orbits in the cluster or galaxy,
the black hole can have only a small fraction of its total mass). These
black holes might be associated with the formation of these systems,
which is not understood, or produced in their later evolution (2.4).

It is now known that the source of the X-ray emission observed
from some globular clusters is not a central black hole because the
X-rays do not come from the cluster centers (Grindlay, et al. 1984).
Accretion onto very massive black holes would be expected to pro-
duce visible or ultraviolet radiation, rather than X-rays. In a popular
model quasars (4.7) are the consequence of accretion onto a black
hole at the center of a galaxy. The thermal radiation of an accretion
disc may contribute to the blue and ultraviolet emission from some
quasars, but it is not the principal source of their radiation.

It may be possible to detect massive central black holes by their
influence on the distribution and motions of stars and gas around
them, but claims to infer the presence of black holes on this basis
remain controversial. It is difficult in practice to identify the effects
of a black hole on a distribution of stars if the black hole contains
only a small fraction of the total mass. Such a black hole dominates
the gravitational potential in only a very small fraction of the total

volume, and a dense (but far from relativistic) inner nucleus of stars
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may resemble the central concentration produced by a black hole.
Observations with much improved spatial resolution are required to
solve this problem.

Black holes are perhaps the most exotic and intriguing objects
in astrophysics. Disappointingly, the study of their accretion has
contributed so little to their understanding or to that of accretion
flows that it is not possible even to distinguish them from neutron
stars except by measuring their masses.

4.7 Quasars

The study of quasars involves many different problems and phenom-
ena, ranging from the source of their power to the properties of the
gas which produces their observed atomic line radiation. The field
is so broad that there is no recent comprehensive review, but a sym-
posium (Ulfbeck 1978) provides a broad survey.

The definition of a quasar (a name derived from the more cum-
bersome expressions quasi-stellar object or quasi-stellar radio source)
depends on the astronomer, but usually includes the condition that
the image on a particular series of photographs (the Palomar Sky
Survey, taken with a 48 inch Schmidt telescope) resemble that of
a star. This definition is clearly dependent on the instrument and
observing conditions. Better photographs often show distinctly ex-
tended images, and the Space Telescope may show a great deal of
structure. It is unfortunate that the balloon-borne Stratoscope tele-
scope could not obtain images of quasars, although it did obtain an
image of a related active galactic nucleus (Schwarzschild 1973; Light,
et al. 1974). This telescope preceded space telescopes by more than
15 years. Larger balloon-borne telescopes, equipped with modern
detectors, may be capable of angular resolutions equal to those of
space telescopes, with greater flexibility and at lesser cost.
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Quasar spectra contain strong emission lines (though there ex-
ist BL Lacertae objects which resemble quasars except that they
show no spectral lines at all). This line radiation (1.14) is proba-
bly produced by ions ionized or excited by the quasar’s ultraviolet
continuum radiation. The emission lines are observed to have large
redshifts, which are attributed to the expansion of the universe and
which imply that quasars are very distant and very luminous.

The characteristic observational properties of quasars have been
known since their recognition in the mid-1960’s: luminosity, vari-
ability, and spectrum. The visible luminosity of a quasar may be
~ 10%6 —10%7 erg/sec, more than 100 times the luminosity of a bright
galaxy. In some cases it varies on a time scale of days. This vari-
ability, a power-law spectrum of the continuum radiation, and linear
polarization of several percent in some quasars are evidence that
much of their radiation has a nonthermal origin. Many quasars are
also observed to be radio and X-ray sources. Their radio emission
is certainly synchrotron radiation by relativistic electrons, and their
X-ray emission is probably also nonthermal.

Quasars are observed at higher redshifts than any other discrete
astronomical objects, with values of redshift z R 2 very common
(z = AX/Ag, where A is the wavelength at rest). Ultraviolet lines
like Lyman o (1216 A) are shifted into the visible spectrum. At this
distance an ordinary galaxy would be nearly undetectable, and if de-
tected would have an image barely larger than that of a star seen
through the Earth’s atmosphere. The slightly extended images ob-
served for many quasars are widely believed to be luminous galaxies
at whose centers the quasars are found. When images and spec-
tra of sufficient spatial resolution to separate cleanly the extended
image from the central quasar are obtained, this hypothesis will be
tested. It could instead be that these extended sources of radiation
are largely gas excited by the quasar’s energy, thus resembling a giant
H IT region (a gas cloud ionized by ultraviolet radiation from a central



302 High Energy Phenomena

source) or a supernova remnant more than an ordinary galaxy.

The most natural and familiar interpretation of quasar contin-
uum radiation is that it is electron synchrotron radiation. Unfor-
tunately, simple synchrotron models are inconsistent with the small
sizes inferred (1.6.7) from the rapid variability of some quasars and
related objects. The synchrotron radiation energy density is so high
that the relativistic electrons lose more energy to Compton scattering
than to synchrotron radiation itself. The Compton scattered radi-
ation therefore has a much higher energy density than the original
synchrotron radiation field. The power an electron loses to Compton
scattering (2.6.36) is proportional to the energy density of the scat-
tering radiation field. The power lost by scattering some photons a
second time then far exceeds that lost in scattering the original syn-
chrotron radiation, and the power lost by scattering a few photons
a third time exceeds that lost in the second scatterings, ... (Hoyle,
et al. 1966). The result would be an enormous (though not infi-
nite) energy loss by Compton scattering which is inconsistent with
the model of a synchrotron radiation source, and which would imply
that most of the quasar’s luminosity is emitted as X-rays and ~y-rays,
in conflict with observation.

This “Compton catastrophe” led some astronomers to question
the luminosity estimates, which are based on the interpretation of
the redshifts as those of cosmological expansion. Unfortunately, no
satisfactory alternative explanation of the redshift has ever been sug-
gested, and strong circumstantial evidence supports the cosmological
interpretation. A long and fruitless controversy has raged concern-
ing the estimates of quasar luminosity and the interpretation of their
redshifts (Field, et al. 1973). Nearly all astronomers accept the red-
shifts as cosmological, but a few skeptics remain.

Ingenious theorists have suggested ways to avoid the “Compton
catastrophe.” The most plausible involves an anisotropic distribution
of relativistic electrons. If they are directed nearly radially outward,
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as would be expected if they are produced in and stream away from
a central source, then their synchrotron radiation would be similarly
directed outward (by the kinematics of relativistic particle radiation).
The radiation energy density in the electrons’ frame is then much
less than that in the laboratory frame, reducing the rate of Compton
scattering (Woltjer 1966). This natural and attractive mechanism
can produce an arbitrarily large reduction in the rate of Compton
scattering, and thus can eliminate the “Compton catastrophe,” if the
electron collimation is good. Observations of superluminal expansion
(a size which appears to grow at a speed faster than ¢) in many radio
sources similarly imply the directed outflow of relativistic electrons
(1.6).

In an historical review Weedman (1976) argued that in slightly
different circumstances quasars would never have been classified as
a distinct class of objects, but would have been considered extreme
examples of previously recognized classes of galaxies (Seyfert and N-
galaxies) with peculiar active nuclei. Many of these active galactic
nuclei produce variable, polarized, visible emission with power law
spectra, and appear to be lower luminosity examples of the same
phenomenon observed in quasars. These galaxies are close enough
to us that their images look like those of galaxies, and values of their
redshifts may be measured from the galactic images (rather than
from the active nuclei). The interpretation of these redshifts as those
of cosmological expansion has been uncontroversial. Some of these
objects are sufficiently luminous and variable (on time scales shorter
than those of quasars) that simple synchrotron models lead to the
“Compton catastrophe.” Had this problem first been discovered for
Seyfert galaxies, the redshift controversy might never have arisen. It
is likely that quasars are distinguished from their less controversial
siblings only by greater distance and more luminous nuclear activity,
which obscure their galactic nature and give them a point-like (quasi-
stellar) appearance.
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It is possible to predict a limit to the rapidity with which a
luminous object, producing energy by accretion, can vary. Requiring
L < Lg (1.11.6), tyer ~ R/c (1.6.7), and writing ke, in terms of
physical constants (2.6.30,32), implies

: > [ Rc? e*L
ver GM ) m2myc8

Rc?\ sec?
> —44

~ 1 — | —L
610 (GM) erg

(4.7.1)

If the object is a source of y-rays with energy E R 1 MeV and
luminosity L., then (4.5.6) implies
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> sec? (4.7.2)
R1x10790—"L,.
erg

The observed variations of quasars and active galactic nuclei satisfy
these constraints. Their violation would not contradict any funda-
mental law of physics, but would require either some other immedi-
ate energy source (for example, the release of magnetostatic energy,
although the ultimate source could still be gravitational), directed
relativistic motion, anisotropic emission, or (4.7.1 only) magnetic
confinement.

In the early days of quasar studies it was thought that their high
power and compact size (implied by their variability) were inexplica-
ble. This was probably the reaction of astrophysicists startled by the
apparent novelty and extraordinary energy scale of the phenomenon.
It is now widely accepted that the observed properties of quasars do
not violate any physical laws or even other accepted astrophysical
ideas, but we are hardly closer to understanding how they actually
work.
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Quasars’ large power and small size point to the release of grav-
itational energy by accretion into a deep potential well. Many de-
tailed models have been proposed, involving a single very massive
black hole, clusters of black holes of stellar mass, of neutron stars, or
of pulsars, colliding stars in dense clusters, supermassive stars, super-
novae, accretion discs (under a variety of names), and probably every
other combination of object (or fantasy) known to the theoretical as-
trophysicist. Unfortunately, none of these models really explains the
required acceleration of energetic particles, or makes other unam-
biguous predictions. The observed star-like (pseudo-stellar) nuclei
of some galaxies radiate ordinary starlight, rather than synchrotron
radiation, but may be the ancestors of quasars. They are hints that a
galactic nucleus may contain a star cluster dense and massive enough
to power a quasar in its death-throes.

Perhaps the most popular model (Rees 1984) is rapid accretion
onto a massive black hole. This model is attractively simple, and a
massive black hole is a plausible result of the evolution of a dense
cluster of stars at the center of a galaxy. Most processes (2.4) in-
crease the gravitational binding of such a cluster, and the formation
of a black hole may be inevitable. Once formed, it will grow by accre-
tion of gas or even entire stars, at a rate limited only by the supply of
mass. The greater uncertainty may be whether massive black holes
have formed by the cosmological epoch at which the observed quasars
were radiating, rather than whether they form at all.

Black hole accretion is believed capable (as well as these pro-
cesses are understood) of supplying the required high power, and
is consistent with the small size implied by the observed variability.
For example, if M = 108 M, then Lg ~ 104 erg/sec (1.11.6; see also
3.6, 3.7), and the characteristic minimum time scale of variability of
the inner disc is ;4 (1.6.6) or ¢4, (4.7.1), and is ~ 1 hour, consistent
with observation.

More difficult is the problem of explaining the acceleration of
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an enormous flux of relativistic electrons, required to produce the
observed radiation by the synchrotron process. Blandford (1976)
and Lovelace (1976) have suggested that a magnetized accretion disc
may act as a homopolar generator, in analogy to pulsars (4.4.2), and
have suggested that it may directly convert much of its luminosity
to the acceleration of relativistic particles rather than to thermal
radiation. These models even provide a natural explanation of the
geometry of the jets and double radio sources associated with some
quasars and active galactic nuclei. Their difficulty is that in order
to obtain particle acceleration the plasma density must not exceed a
characteristic value (4.4.19) which is extremely low (~ 10710 cm=3)
for the parameters appropriate to these discs. It is hard to imagine
a region of interstellar space, particularly one in which there is a
supply of gas to feed an accretion disc, evacuated to this density,
which is ~ 10710 of the mean interstellar density.

There are models in which particle acceleration is the conse-
quence of hydrodynamic, magnetohydrodynamic, or plasma turbu-
lence, much as is believed to occur in supernova remnants and the
interstellar medium. This turbulence might be excited by energy
extracted from an accretion disc electrodynamically, or from other
gas motions, such as the expansion of supernova shells. Even if the
source of energy is an accretion disc, particles may be accelerated by
turbulent processes, rather than by the pulsar process.

In yet another class of models many individual objects of stellar
mass supply a quasar’s luminosity. Because of the need to acceler-
ate energetic electrons it is natural to assume that these are young
rapidly spinning pulsars. Supernovae or stellar collisions might ex-
plain the emitted power, but not the efficient acceleration of particles.
Power is drawn from the pulsars’ rotational kinetic energy, but its
ultimate origin is the gravitational binding energy of the neutron
stars, whose rotational velocities are multiplied in a collapse which
conserves angular momentum. The advantage of this model is that
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it naturally explains the efficient acceleration of energetic electrons.
The bound (4.7.1) also does not apply because the immediate source
of energy is not accretional, and L > Lg is possible in a neutron
star magnetosphere (Lg must be exceeded by several orders of mag-
nitude).

The multiple pulsar model of quasars would require that rapidly

0'3 gauss) be

spinning pulsars (spin periods ~ 0.001 second, By ~ 1
born several times a year in a dense cluster of rapidly evolving stars.
There is no reason, other than the desire to explain quasars, to believe
that the evolution of a galactic nucleus will lead to such a cluster.

The observed brightness histories of quasars (Angione and Smith
1985) contain slow trends as well as rapid variations of intensity.
Models involving many independent events, such as the birth of pul-
sars, might be expected not to show slow trends in their total lumi-
nosity, but rather to resemble Poisson noise processes. Further, the
observed rapid variations in intensity may be hard to explain in a
model in which pulsars are born suddenly, but then slow gradually.
Ingenious theorists can answer these objections (for example, mod-
ulating the emission by immersing the sources in a single gas cloud
whose properties vary on both longer and shorter time scales).

None of these models, nor any others, are understood quantita-
tively, and most models can be bent to fit almost any data. Prefer-
ences among them are largely a matter of opinion as to their relative
plausibility (or implausibility). It will be very hard to show which
model is correct.
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Appendices

A.1 Information in Astronomy

In this appendix I give a brief and rough discussion of the information
content, and useful information content, of some astronomical data.
The purpose is only to explain why certain kinds of astronomical
data have been and are likely to be useful, and others less so; a
whiff of information theory is mixed with astronomical experience
and cynicism.

If we perform a measurement of a quantity with a signal to
noise ratio S/N (or, equivalently, that ratio of measured quantity
to its uncertainty) we may express the result as a number in binary
notation with n = log,(S/N) significant digits. In other language,
the result contains n bits of information. n cannot be very large
(Fermi is reputed to have said that all logarithms are equal to 10).

If the measured value is zero (or numerically small), as is fre-
quently the case, this definition of n underestimates the significance
of the result, and S should be some estimate of the characteristic
magnitude the result of our null experiment could have had. For
example, if we are measuring the charge of the neutron § might be
taken to be the electron charge, even though the experiment has
always produced a null result. Clearly we have introduced a sub-
jective element into n. To make it objective and more quantitative
would require a careful consideration of the various hypotheses we
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might consider (and their a priori likelihoods). Such exercises in
probability theory are rarely justified in experimental science.

We frequently have a series of N similar measurements, repre-
senting a time series, its Fourier transform, a spectrogram, an image,
or some other array. This array then contains Nn bits of information.
Note that a minimum of 22" N photons must have been detected.
Values of N are found over an enormous range, from one or a few
(classical astronomical photometry) to 103 — 10° (optical spectrom-
etry, typical astronomical time series), to 10° (good photographic
images).

These estimates of information content may offer valuable hints
to the opportunities for observing interesting phenomena. For ex-
ample, most of the interesting (in my narrow opinion!) phenomena
in X-ray astronomy have been found in studies of time series and in
the spectroscopy of the optical counterparts of X-ray sources; both
these kinds of study produce data with fairly large values of N. As-
tronomical X-ray spectroscopy, for which usually N N 100, has been
much less fruitful.

It is necessary, however, to distinguish between information in
the sense of the communications engineer, which was the basis of
these estimates, and scientifically useful information. If we measure
a physical constant N times we should obtain the same value each
time, and clearly do not have Nn useful bits of information. Rather,
we have n useful bits if the errors are systematic; if they are random
and well-behaved statistically we can average our measurements to
produce a mean with greater accuracy (up to n+ 3 log, N bits) than
that of an individual measurement. The extra bits are not lost;
rather, we already assumed we knew them when we assumed that we
were measuring the same physical constant N times, so that finding
them again in the constancy of the data does not tell us anything
new.

Images have very large values of N, but have been particularly
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disappointing in astronomy. One reason is that many astronomical
objects (most familiarly, stars) are unresolved in images. Only one
independent picture element of the image collects data from the ob-
ject of interest, and the rest are irrelevant. The second reason is
less trivial. It is very hard to formulate quantitative hypotheses to
describe usefully the morphology of extended objects, and hence it
is hard to utilize the high information content of their images.

Spectrograms have related problems. Wavelengths at which
no detectable spectral features exist produce no useful information.
Most of the spectral lines observed come from a relatively few species
and ionization states, and their intensities are related by inflexible
rules of atomic physics. Once we assume the laws of atomic physics
to hold everywhere, the number of independent parameters which
can be measured is much smaller than N. In X-ray astronomy most
spectrograms determine at best a density, a temperature, and a few
abundances (in principle the spatial distribution of these quantities
is described by an infinity of parameters, but usually the data are
sufficient to determine only a very few). The greater spectral resolu-
tion and information content of visible spectra permits the resolution
of line profiles, and hence the study of additional physics: velocity
fields and line-broadening mechanisms.

Time series in astronomy have been very useful when they have
led to the discovery of regular periodicity. Time series without such
periodicities have been nearly useless, even though in principle they
contain a great deal of statistical information, because it has not
been possible to formulate scientifically interesting and sensible hy-
potheses to predict their statistics. For example, a time series of
N elements which is observed to be constant (within the statistical
errors) contains much fewer than Nn bits of useful information. In-
stead, it contains no more than log, M bits, where M is the number
of scientifically sensible (not a priori rejected) hypotheses. Since
these hypotheses will generally be expressible as specific functional
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forms for the signal, with a small number of free parameters, M will
be approximately the number of distinct functional forms of hypothe-
ses times 2P™ where p is the number of free parameters in each and
mSn+ %log2 N is the number of significant binary bits to which
each may be determined. In realistic scientific theories p is a small
number and the final result is usually ~ 100 bits, and often less. For
a physical constant there is one hypothesis and p = 1.

The most familiar and important use of time series is the study
of regular periodicities, which are predicted by many theories (as a
consequence of orbital, rotational, or vibrational motion), and which
are widely observed. A time series of N evenly spaced elements
permits a frequency resolving power of N/2. It is therefore possible
to measure directly a period or frequency stability (quality factor)
Q = 1/|P| (where P is the period) of approximately N/2. This Q
may be defined very generally as the width of a Fourier transform,
and does not require an assumption of sinusoidal variation. Such a
measurement of P or () contains log, N bits; this is our previous
expression with one hypothesis, p = 1, and m = logy N (or M = N).
It has been tacitly assumed that n e %log2 N; complications ensue
if this is not the case. If exact sinusoidal behavior is assumed the
accuracy to which its period may be determined increases to 1 part
in 2" N1/2, corresponding to logy M = n + 4 log, N bits (note that
this accurate determination of a sinusoidal period does not imply
that the actual @ of the oscillator is as large as 2"N'/2; a much
longer time series would be required to establish this). In practice,
systematic errors rarely permit this full extra accuracy.

The use of unevenly spaced time series (the only ones available
over extended periods when observations are interrupted by daylight,
seasonal effects, and other practical problems) permits very much
higher accuracy in period determination for a given number of ob-
servations than is possible with evenly spaced time series. This accu-
racy is obtained at the price of failing to distinguish strictly periodic
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behavior from a large class of aperiodic behavior (periods modulated
in regular but complex ways). These aperiodic hypotheses are re-
jected on sound scientific grounds, but they are fully consistent with
the data; these independent scientific arguments add a significant
number of essential bits of information.

It is possible to determine a frequency stability  and to mea-
sure the period of oscillation (assumed sinusoidal) to an accuracy of
1 part in @ with ~ In @ observations of moderate quality (n R 5).
This method is widely used to measure values of Q as high as 10'°
in pulsars and other very stable oscillators. A small number j of
observations over a period T determine the frequency to an accu-
racy of about +1/T. An additional j observations at intervals of
order T'/2 later extend the time baseline to of order j7/2, and the
frequency accuracy to about +2/(jT). After k repetitions of this
process the time baseline is of order (j/2)*T, the frequency accu-
racy is of order 2¥/(j*T), and the required number of observations
Jjk+1)~ jln@Q/1In(j/2) R 2eln (@ varies only logarithmically with
Q. Accurate data permit better period determinations in each iter-
ation and longer gaps between subsequent observations; this is re-
quired in practice by the timing of opportunities for observation,
which are usually brief and widely separated. This reduces the re-
quired number of observations by a modest factor.

Another problem in which a qualitative application of these ideas
is illuminating is that of deconvolution. Frequently we have data (in
the form of a series or array of numbers) which have been smoothed
by the limited resolution of an instrument or some other process. Fa-
miliar examples are visible images blurred by atmospheric “seeing”
and spectrograms smoothed by the finite spectral resolution of the
instrument. If the properties of the smoothing function (the atmo-
spheric or instrumental response to a point-like signal) are known
then one might hope to remove its influence and to recover the orig-
inal signals. (Usually the smoothing function is only approximately
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known, but this is generally not critical.)

A variety of linear and nonlinear algorithms exist to accomplish
this process of “deconvolution,” but their results are frequently dis-
appointing. The reason is easy to see. Suppose the original observed
data consist of U numbers, each known with n significant binary
bits, and it is desired to increase the resolution (in one dimension)
by a factor g in order to obtain a deconvolved series of N = qU
independent numbers. Only nU bits of information are available, so
each of the new numbers can only have (on average) n/q significant
bits. Because n is rarely more than 10, it is clear that attempts to
significantly increase the resolution rapidly destroy the ratio of signal
to noise! The most successful algorithms are those which best use
the available information to answer the scientifically interesting ques-
tions by fitting to an intelligently chosen model, rather than blindly
attempting to increase the resolution; those known as “maximum
entropy methods” provide a systematic (and in some sense optimal)
way of imposing constraints.

It is my opinion that formal statistical methods and tests are
frequently misleading and of little real use in experimental science,
and that the best way to extract useful scientific information from
imperfect data is to compare them to the predictions of sensibly
chosen models, using the human eye to assess the results.

A.2 Fermi at Alamogordo

The story is told (I do not vouch for its historical accuracy) that
when Fermi witnessed the first nuclear explosion he wanted a quick
estimate of the energy Y it released. His observing point was far
enough from the explosion (at a distance R > (Y/P,)'/3) that its
shock wave had become very small in amplitude, with a pressure
jump AP < P,, where P, is the pressure of the ambient air. This
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is called regime III in 3.4. Shortly before the expected arrival of the
shock he is said to have dropped a few small scraps of paper into
the air. A number of seconds later the shock passed by. Because the
scraps of paper were very light they moved with the air, while more
massive objects remained fixed. By measuring the displacement AR
of the scraps of paper he was able to estimate the energy of the
hydrodynamic motion produced by the explosion.

If an explosion is close to the surface of the ground (in com-
parison to the observer’s distance from it) its shock will be nearly
hemispherical. The mechanical work done by the shock against the
pressure of the atmosphere is

W = 27 R*ARP,. (A.2.1)

Air is well described (under ordinary conditions) by a perfect
gas equation of state with a ratio of specific heats v = cp/cy = 1.40
(1.9.1), and Py = 1.0 x 10% dyne/cm?. A fraction (cp — cv)/cp of
the energy supplied to the atmosphere does mechanical work against
its pressure, while its internal energy is increased by the remaining
fraction cy /cp. If the atmosphere were not permitted to move the
two specific heats would be the same, and all of the energy injected
by the explosion would appear as internal energy of the air. Equating
W to the portion of the explosive energy which does mechanical work
gives
Y = (67”> 2w R*ARP,
PV (A.2.2)
= <L> 2r R2ARP,.
v—1
For nuclear explosions this is a conveniently measured displace-
ment. If Y = 4.18 x 10%° erg (equivalent to 10 kilotons of standard
conventional explosive) and R = 10 km, AR = 19 cm. However,
AR x R(AP/Py), where AP is the overpressure at the point of ob-
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servations. For small explosions, where observations are conducted
at small R, the displacements may be too small to measure easily.

A number of approximations have been made. We have ne-
glected the energy coupled into the ground, which is very small be-
cause the large jump in density and sound speed at the surface leads
to a large acoustic mismatch. The kinetic energy of the moving air is
also small. Its characteristic velocity v ~ AR/t ~ ¢s(AR/R), where
t is the time required for the shock to arrive after the explosion and
cs is the sound speed of air. From this it is easy to see that the
fraction of W which appears as kinetic energy is O(Y/PyR3) < 1.
There are more significant errors. In the inner parts of the shocked
air the temperature is very high and ~ differs from (is generally less
than) its value in cool air. The calculation also ignores the energy
radiated by the hot fireball. For nuclear explosions in air this leads
to an underestimate of Y by a factor ~ 2, and for shocks in the inter-
stellar medium, which pass through a long snowplow stage (regime
ITb in 3.4) in which they radiate strongly, this error may be even
larger. Finally, if the result is to be applied to a shock which ex-
pands spherically, as is the case in most astronomical problems, the
factor 2w must be replaced by 4.

In principle, this method could be applied to interstellar shocks,
if the displacement of suitable light objects could be measured. Be-
cause interstellar shocks move so slowly (on astronomical distance
scales) it would probably be necessary to measure the displacement
of a continuous emitting gas filament where the shock had passed
through it, in comparison to a place where a dense cloud shielded it
from the shock. It is unlikely to be feasible to observe the displace-
ment of the filament as it occurs.
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227, 236, 240, 262, 313

Chemical potential, 105

Circuits, 283

Clocks, 269

Clouds, interstellar, 2, 73, 74,
76, 79, 94, 133, 135, 139, 146,

158, 170, 172, 183, 188, 193,
212, 261, 262, 318

Clusters, star, 5, 97, 115-128,
173, 193, 254, 299

CNO cycle, 53, 239, 240, 254

Cobalt, 261

Coffee, 32

Coherent emission, 275, 276

Coincidences, positional, 288,
289

Collimation, jets, 210-214

Collimation, particles, 20, 294,
302-304

Collimation, radiation, 20, 276,
284, 294, 303, 304

Collisions, particle, 83-100, 118,
133, 143, 182, 190, 191, 193,
211, 218

Collisions, star, 127, 305, 306

Color index, 3

Comets, 258, 295

Compton “catastrophe”, 302,
303

Compton cooling (of electrons),
112-114, 232, 245

Compton scattering, 47, 100-
104, 108, 111, 112, 152-155,
256, 291, 302, 303

Comptonization, 100-114, 134,
135, 153

Conduction, electrical, 218, 223,
224, 247, 275, 277

Conduction, heat, 7, 33, 49, 87,
161, 167, 180, 182, 236, 237

Conductivity, electrical o, 219,
254

Constitutive relations, 7, 9, 40—



54, 164, 177, 185, 205, 218

Convection, 2, 7, 33—40, 55-57,
61, 72, 75, 76, 141, 210, 212,
220, 221, 223, 240

Corotation, 279

Cosmic rays, 132, 135, 140, 158,
285

Cosmology, 159

Coulomb drag, 91-96, 137, 145,
231, 244, 245, 255

Coulomb energy, 44

Coulomb logarithm In A, 93, 94,
96, 97, 99, 118, 119, 126, 219

Crab Nebula (M1), 184, 259,
267, 271, 272, 276

Crab pulsar (PSR0531+21) 259,
267, 271-274, 276

Cream, 32

Cross-diffusion, 87

Cross-section, electron scatter-
ing oes, 47, 108, 152, 153

Cross-section, Klein-Nishina, 108,
155

Cross-section, photon-photon pair
production o, 293

Currents, 216-219, 278, 280,
282, 283, 292

Curvature radiation, 256, 282,
291, 293, 294

Cyclotron radiation, 146-149,
232, 245, 246, 256, 284

Cygnus X-1, 202, 298

Cygnus X-3, 255

Debye length Ap, 92, 93, 96, 98,
118
Deconvolution, 315, 316

Index 321

Degenerate matter, 5, 7, 15, 43—
47, 49, 61-63, 66, 237, 264,
265, 267

Degrees of freedom ¢, 41, 42,
168

Deuterium, 53

Diffusion thermo-effect, 87

Dimensional analysis, 3, 184-
186

Diproton, 53

Discs, 141, 171, 172, see also ac-
cretion discs, Galactic disc

Dispersion relations, 167

Displacement current, 216, 217

Distribution functions, energetic
particle, 132-136, 140, 150,
255

Distribution functions, velocity,
81-90, 98, 123, 125, 158, 159,
182, 218, 255

Doppler broadening,
233, 291

Double-diffusive processes, 36

Dust particles, see grains

Dwarf novae, 202, 229, 238

Dynamical friction, 89-97

Dynamos, 220, 221, 223

147-149,

Eddington approximation, 27,
28, 30, 32, 33, 164

Eddington limiting accretion rate
Mg, 203, 204, 207, 208, 213,
245

Eddington limiting luminosity
Lg, 12, 18, 19, 30, 39, 40, 59,
60, 69, 70, 76, 114, 203, 204,
207, 237, 241, 244, 292, 294,
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295, 304, 305, 307

Eddington limiting luminosity,
pair plasma Lg, 292-294

Eddington’s quartic equation,
60

Electric dipole radiation, 142-
146

Electric fields and potentials,
218, 219, 221-223, 255, 275,
277282

Electrodynamics, 216, 277, 283

Electromagnetic torque, 234,
270, 282, 283

Electron capture, see inverse (3
decay

Electron spin states, 245

Emissivity, 12, 22, 27, 28, 32,
71, 73, 129, 144-146, 150,
151, 154

Equipartition (magnetic energy),
151, 152, 220, 221

Eulerian equations (hydrody-
namics), 159-162

Euler’s equation, 160

Explosions, 182-184, 239-241,
260, 266, 316-318

Explosions, clandestine, 284

Explosions, underwater, 213

Explosives, 67, 317

Fermi, E., 311, 316, 317

Fermi acceleration, 133, 134,
136, 137

Fermi energy ep, 43-45, 264,
266

Fermi momentum ppg, 43-45

Fine structure constant «, 145

Fluence, 285, 287-289
Fokker-Planck equations, 88—
90, 101, 102, 124-126, 139

Galactic bulge, 254
Galactic discs, 133,
285287, 292, 295
Galactic halo, 287, 290, 292,
293, 295

Galactic spiral arms, 173, 287

Galaxies, 97, 116, 119-121, 128,
173, 193

Galaxies, N-type, 303

Galaxies, pseudo-stellar nuclei,
116, 119, 305

Galaxies, Seyfert, 303

Galvanomagnetic effects, 218

171-173,

Gamma-ray burst, March 5,
1979, 288-290, 295
Gamma-ray bursts, 19, 241,

284-297

Gamma-ray bursts, distances,
289, 290, 292, 294

Gamma-ray bursts,
tion, 286, 287

Gamma-ray limiting luminosity,
293, 294, 304

Gamma-ray sources, 141, 255—
258, 268, 302, 304

Gamma-rays, 154, 282, 284,
293, 294

General relativity, 66, 67, 196,
242, 243, 297

Generators, 283, 306

Glitches (pulsar), 273, 296

Grains, interstellar 76, 78, 158,
188, 210, 259, 263, 298

distribu-



Granulation, 38

Gravitational radiation, 273,
274, 289

Gravity, 1, 14-16, 63, 122, 123,
229, 237, 243, 264, 297

Grey bodies, 76, 77

H II regions, 301

H|— ion, 12

Hall effect, 218

Helium, 4, 5, 18, 53, 68, 69, 71,
210, 231, 236, 239, 254, 264,
265

Hercules X-1, 255

Hertzsprung-Russell diagram, 3
5, 70

Hydrodynamics, 158-165, 172,
174, 176, 182, 186, 191, 212—
215, 217, 245, 297, 317

Hydrogen, 4, 5, 18, 53, 68, 69,
71, 210, 219, 222, 230, 236,
238, 239, 241, 254, 292

Hydrostatic equilibrium, 7, 14,
16, 17, 30, 34, 35, 39, 54—
56, 58, 59, 66, 68-70, 79, 123,
169, 170, 197, 204, 207, 209,
210, 212, 221223, 236, 239,
264, 265

Hyperbolic orbits, 189, 192

Images, 300, 301, 303, 312, 313

Impedance, 283

Incompressible fluids, 160, 163,
214

Information theory, 311-316

Interstellar medium, 58, 135,
158, 172, 179, 183, 187-189,

Index 323

192, 193, 213, 214, 219-221,
223, 228, 230, 261, 280, 306,
318
Inverse 3 decay, 16, 262, 265
Inverse bremsstrahlung, 47, 48
Isothermal gases, 178, 179, 187
Iron, 165, 261-263, 265, 281

Jeans instability, 168-173, 179

Jeans length Ay, 96, 97, 169-
173, 179

Jets, 210-216, 306

Jets, penetration, 214

Jupiter, 6, 64

Kinetic equations, 81-90, 104,
165, 216

Kompaneets equation, 88, 89,
101, 104-110, 139

Kramers’ law, 48, 61

Lagrangian equations (hydrody-
namics), 162, 163

Landau damping, 137-139

Lane-Emden equation, 56, 123

Large Magellanic Cloud (LMC),
288-290, 292, 293, 295

Lasers, 20, 49

Liouville equation, 82

Lithium, 53

LMC X-4, 255

Local thermodynamic equilib-
rium (LTE), 27, 48, 73, 158,
159

Mach number, 177
Magnetic confinement, 292, 294,
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295, 304

Magnetic decay, resistive, 219,
224

Magnetic dipole moments, 248,
249, 251, 252, 269, 270, 277

Magnetic dipole radiation, 252,
253, 269, 270, 280, 283

Magnetic field lines, 223, 224,
244, 247, 252, 257, 279, 280

Magnetic field reconnection, 140,
296

Magnetic fields, 22, 135, 146
152, 159, 198, 205, 206, 212,
213, 216221, 223, 224, 227,
228, 230-235, 243-246, 248,
250, 254, 256, 257, 268271,
273, 276-282, 284, 290-292,
294, 295, 297, 306

Magnetic poles, 247, 254, 257,
279, 280

Magnetohydrodynamic waves, 72,

133, 136, 139, 253

Magnetohydrodynamics, 172, 216—

224, 247, 253, 279
Magnetospheres, 141, 247, 250,
257, 274, 278-281, 283, 291,
294, 307
Magnetostatic energy, 296, 304
Mass loss, 6, 64, 74-79, 194,
239, 257, 261
Mass-luminosity relation, 58—62
Mass-radius relation, 61, 64
Maximum entropy method, 316
Mean free path, 182, 217, 231
Milk fat, 32
Mixing length £, 37-39
Mixing length theory, 37-39

Molecular gases, 12, 42, 168,
317

Molecular weight p, 9, 68

Molecular weight per electron
/1’67 65

Moment expansions, 24-27, 84,
163-166

Moment of inertia Z, 249, 251,
270

Momentum space diffusion, 89,
124, 125, 139

Multi-diffusive processes, 36

Muons, 256

Neutrinos, 15, 256, 265, 266

Neutron matter, properties, 66,
67, 266

Neutron stars, 43, 62, 66, 67,
87, 113, 114, 116, 158, 188,
194, 199, 205, 219, 224, 242—
260, 263, 267, 268, 272, 274,
276, 277, 279-282, 284, 289-
292, 294-297, 300, 305-307

Neutron stars, velocities, 290

Neutrons, 43, 46, 62, 66, 265,
311

Nickel, 261, 262

Nitrogen, 165, 168, 239, 240

Nova-like variables, 229, 238

Novae, 228, 229, 235-241, 253,
258, 267, 296

Nuclear reactions, 2, 4, 57, 10,
11, 13, 16-18, 28, 33, 49-54,
61, 65, 68, 69, 76, 78, 161,
205, 236-239, 253, 261-266,
292, 295

Numerical methods, 1, 162



Ohm’s law, 218

Opacity &, 7, 8, 10, 12, 18, 22,
27-30, 32, 34, 36, 40, 46—
49, 59-61, 71-73, 76-78, 102,
148, 153, 206, 231, 245, 259,
292

Opacity, bound-free, 12, 48

Opacity, cyclotron K¢y, 148

Opacity, electron scattering ks,
47, 59, 153, 206, 292

Opacity, free-free, 12, 47, 48

Opacity, Rosseland mean kg,
29, 47, 48, 77

Optical depth 7, 31-33, 71-73,
77,79, 112, 131, 146, 202,
207-209, 211, 244, 261, 291,
295, 299

Oxygen, 65, 68, 165, 168, 239,
240

P Cygni spectral line profile, 74

Pair annihilation, 101, 284, 289,
291, 294

Pair annihilation, one photon,
282

Pair plasma, 292

Pair production, 16, 101, 265,
266, 291, 293, 294

Pair production, one photon,
282

Pair production, photon-photon,
293, 294

Particle acceleration, 128-141,
159, 213, 214, 256-258, 271,
276, 279-281, 291, 294, 296,
305-307

Particles, collisionless, 119, 172,

Index 325

173, 193, 194, 213, 217, 218,
222

Particles, energetic, 19, 20, 102,
132-141, 158, 211, 212, 215-
218, 255, 257, 259, 268, 275,
291, 293, 294, 302, 303

Perfect gases, 9, 14, 40-43, 177,
222

Periodicities, degenerate dwarf
spin, 234

Periodicities, neutron star spin,
246, 249-253, 268-274, 289

Periodicities, regular, 234, 268,
269, 277, 288, 289, 313-315

Pions, 256

Planck function, 27, 28, 32, 48,
71, 102, 105, 146, 148, 149,
201, 232, 275

Planets, 6, 64, 120, 158, 196

Plasma instability, 139, 182, 276

Plasma waves, 87, 137-140, 217,
257

Plasmas, 83, 91-100, 158, 159,
210, 219, 221-223, 247, 255,
257, 275, 278, 279, 281, 291
293, 295, 306

Polarization, 22, 147, 149, 151,
232, 234, 238, 251, 296, 301,
303

Polars, 238

Polytropes, 54-59, 62, 6567,
70, 75, 123, 209

Polytropic index, 55-59, 62, 65—
67, 70, 75, 123

Positrons, 53, 239, 262, see also
pair processes

Pressure, 1, 7-10, 14, 30, 34-36,
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40-42, 55, 160-164, 183-187,
209, 316, 317
Pressure broadening, 233
Pressure, gas, 9, 30, 42-46, 58—
63, 66, 68, 75, 177, 203, 222
Pressure, radiation, 12, 13, 15,
24-27, 30, 42, 43, 58-60, 70,
75-78, 203, 206209, 213, 237
Protostars, see stars, formation
PSR0531421, see Crab pulsar
PSR1509-58, 274
PSR1913+16, 67, 274, 275
Pulsars, 67, 140, 141, 212, 242,
246, 255, 257, 259, 260, 268
284, 289, 290, 305-307
Pulsars, ages, 271, 272
Pulsars, binary, 274, 275
Pulsars, birth rate, 276
Pulsars, spatial distribution, 275,
290
Pulsars, velocities, 275, 290
Pulsations, see periodicities, pul-
sars, X-ray sources

Quality factor @), 269, 270, 314,
315

Quasars and active galactic nu-
clei (AGN), 19, 102, 116, 119,
128, 132, 141, 201, 210, 257,
299, 300-307

Radiation transport, 7, 21-34,
40, 71, 76, 77, 81, 86, 161,
165, 208, 209, 244, 245, 261

Radiation trapping, 79, 204,
208, 209, 244

Radiative cooling, 184, 187, 191,

193, 195, 196, 231, 232, 260,
318
Radio sources, 158, 210, 268,
271, 301
Radioactive decay, 261, 262
Recoil, pulsar, 275
Redshift, cosmological, 301, 302
Redshift, gravitational, 284, 291
Reduced mass, 50, 91
Relativistic motion, bulk, 20, 21
Relaxation, violent, 120122
Reradiation (of absorbed en-
ergy), 73, 292, 296, 297
Reynolds number, 33
Roche lobe overflow, 194, 229,
233, 242, 298
Roche lobes, 194
Rocket nozzles, 213

Saha equation, 12, 54, 159

Scattering, radiation, 27, 28,
30-33, 47-49, 206

Scattering, wave-particle, 133,
134, 136, 257

Schuster mechanism, 73

Schwarzschild criterion, 36

Scintillation, interplanetary, 268

Sedov-Taylor solution, 183

Semi-convection, 36

Shell burning, thermonuclear, 5,
68, 69, 236, 237, 253, 254, 264

Shock jump conditions, 173-
178, 185-187, 231, 232, 245

Shocks, 136, 140, 141, 158, 173—
182, 184, 186, 188, 191, 209,
212, 213, 215, 231, 232, 244,
261, 266, 316-318



Signal-to-noise ratio, 268, 311,
316

Silicon, 264

Similarity solutions, 185

Sky monitoring, 241, 263, 284,
288, 296

Snowplow model, 187, 188, 318

Solar flares, 296

Solar system, 195, 285

Solitons, 181

Sonic booms, 179

Sound speed, 167, 168, 176, 177,
180, 184, 191, 193, 197, 211,
215, 318

Sound waves, 72, 158, 164173,
180, 191

Sound waves, damping, 165

Source counts, 286, 287

Spatial distributions, 272, 275,
286, 287, 290

Specific heat, effective (stars),
15, 236, 237, 264

Specific heats, 37, 38, 41, 42,
237, 264, 317

Spectra, 3, 70-74, 128-132, 261,
284, 289, 294, 295, 298, 301,
312, 313

Spectra, nonthermal, 131, 132,
150, 151, 154, 296, 301, 303

Spectral index, 131, 135, 136,
150, 151

Spectral lines, 71-74, 77, 78,
129, 147, 210, 231, 233, 246,
256, 284, 289, 291, 301, 312,
313

Spectrograms, 312, 313

Speech, 180

Index 327

Spin-down, 251, 252, 257, 269-
271, 273, 274, 282, 283

Spin-up, 234, 249-252, 256

SS433, 196, 202, 210, 211

Stars, binary, 2, 67, 73, 116-118,
127, 188, 194-196, 210, 211,
227-229, 233-235, 238, 241-
243, 246, 248, 251, 254, 255,
257, 267, 274, 275, 292, 295—
298

Stars, brown dwarf, 6, 61, 64

Stars, collapse, 2, 18, 128, 272,
289

Stars, degenerate dwarf, 5, 6,
15, 16, 43, 45, 46, 61-69, 75,
87, 113, 114, 127, 158, 189,
194, 205, 206, 219, 224, 227-
245, 248, 250, 251, 253, 257,
263, 264, 266, 267, 269, 297

Stars, dwarf, 4, 56, 60, 61, 219,
235

Stars, evolution, 1, 5, 65, 68, 69,
264, 265, 267

Stars, exploding, 2, 18, 73, 128,
179, 183, 235, 258, 262, 266

Stars, formation, 2, 68, 172,
179, 188, 195, 196, 210, 211,
224

Stars, general, 1-79, 94, 96, 120,
158, 173, 184, 185, 188-194,
196, 204, 205, 212, 221, 228,
246, 251, 254, 285, 298, 313

Stars, giant and supergiant, 5,
10, 16, 39, 40, 43, 62, 67—
70, 76, 78, 209, 234, 238, 261,
264, 272

Stars, horizontal branch, 70
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Stars, instability, 16, 18, 69,
236, 264, 266

Stars, main sequence, 4—6, 57—
62, 68, 69

Stars, mass loss, 6, 64, 74-79,
194, 239, 257, 261

Stars, masses, 4-6, 5862, 227,
229, 242

Stars, populations, 259, 263,
267, 275

Stars, radii, 5, 227, 242, 243,
261

Stars, rotation, 2, 204, 227, 228,
233-235, 246, 249-252, 256,
268, 269, 271-274, 276, 281,
297, 306, 307

Stars, supermassive, 305

Stars, symbiotic, 230

Stars, velocities, 275

Stars, vibration, 17, 269

Stars, winds, 75-79, 87, 94, 158,
189, 191, 195, 229, 233, 241,
243, 251, 298

Statistics, 124, 255, 288, 311-
316

Stimulated emission, 20, 48

Stimulated scattering, 48, 49,
104

Stopping length, 94-96, 231,
244

Straggling, 96

Stratoscope, 300

Stress, hydrodynamic, 161, 220,
224, 247

Stress, magnetic, 198, 216, 220,
224, 247

Stress, viscous, 198, 199

Sun, 5, 9, 11, 11, 57, 61, 68, 72,
74, 75, 96, 188, 189, 221, 223,
233, 234

Sunspots, 221

Superfluids, 273, 296

Supergranulation, 38

Superluminal expansion, 20, 303

Supernova remnants, 183, 184,
186, 187, 259, 271-273, 276,
280, 281, 288, 289, 302, 306

Supernovae, 179, 183, 184, 187,
235, 258267, 272, 276, 296,
305, 306

Surface charge, 278

Synchrotron radiation, 102, 103,
149-152, 154, 155, 210, 211,
214, 256, 259, 271, 276, 291,
293, 301-303, 305, 306

Telescopes, balloon, 300

Telescopes, space, 300

Temperature, accretion shock
Ts, 231, 232, 245

Temperature, brightness Ty, 275,
276

Temperature, color, 114

Temperature, effective surface
T., 3, 12,13, 32, 70, 114, 200,
201, 230, 243-245

Thermal diffusion, 87

Thermoelectric effect, 87, 223

Thermomagnetic effects, 218

Thermonuclear runaway, 236-
241, 253, 254, 264, 265, 295,
297

Thomson scattering, 47, 108,
113, 152-154



Time scale, dynamical ¢4, 119-
121

Time scale, dynamo amplifica-
tion 44, 220

Time scale, Eddington tg, 18

Time scale, equipartition %4,
97-100, see also time scale,
relaxation

Time scale, hydrodynamic %,
17, 38,79, 114, 170, 239, 240,
249, 264

Time scale, light travel t;, 19,
20, 305

Time scale, magnetic decay t,,4,
219

Time scale, nuclear ¢,,, 17

Time scale, relaxation (gravi-
tating systems) t,., 118-122
126, 127, see also time scale,
equipartition

Time scale, Salpeter tg, 18, 19

Time scale, spin-down tgzq, 271,
272, 274

Time scale, spin-up tg,, 251

Time scale, thermal t;, 17, 38—
40

Time scale, variability ,4., 19,
295, 296, 304, 305

Time scale, variability of y-rays
tva’r’ya 304

Time series, 312-315

Transport coefficients,
159, 180, 182, 218

Turbulence, 2, 3, 33-40, 87, 88,
141, 165, 171, 213, 220, 221,
233, 268, 306

2, 87,

Index 329

400115463, 255
Ultraviolet sources, 201, 230,
232, 236, 263, 299, 301

Vacuum gap breakdown, 282,
283

Variability, 202, 205, 228, 232,
233, 246, 268, 285, 295, 296,
301-303, 307

Variability, periodic, see period-
icities

Vela X-1, 255

Virial theorem, 14-16, 63, 65,
117, 119, 126

Viscosity, 33, 34, 160, 161, 180,
182, 195, 198, 202, 248

Viscous heating, 199, 205, 230

Visible bursts, 288, 292, 293,
295-297

Vlasov equation, 83, 119, 121

Water waves, 35, 180, 181

Wave function, electronic, 245,
281

White dwarves, see Stars, de-
generate dwarf

Wien spectrum, 112, 113

X-ray bursts, 116, 253-255, 295,
297

X-ray sources, 19, 30, 73, 102,
115, 116, 149, 154, 196, 200,
202, 230, 232, 242-246, 251,
252, 263, 268, 271, 285, 292,
295, 297, 298, 301, 302, 312,
313

X-ray sources, dark episodes,
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252 X-ray sources, pulsating, 246-
X-ray sources, globular cluster, 253
115, 116, 299



