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PREREQUISITES

What follows here is a summary of things that I expect you to know already,
although the way I present it may be new to you.

Field theory

We begin in what I hope is a leisurely pace with a field theory much simpler
than the one we will study, namely Maxwell’s. As we will see, it is not all that
different from Einstein’s theory of the gravitational field if we think about it in
the right way. Maxwell’s theory describes the electromagnetic field through the
equations
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Here the electromagnetic field strength is
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At any given time then the field strength can be visualized as two vector fields
E and B in space.

Concerning matter (which is not really part of the theory, it is just put in),
it is described by a charge density and a current vector according to the scheme
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Maxwell’s theory allows us to draw one important conclusion about matter,
namely that
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as it must be because F,3 = —Fp,. The conclusion is that electric charge is
conserved, by necessity.

How can we solve Maxwell’s equations? One way to do it is to pick an
arbitrary A,, define the electromagnetic field strength as above, and then define
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This is known as “Synge’s method” of generating solutions, and is evidently of
no interest whatsoever.



To get anything interesting out of the theory we must think of J* as a
function of some kind of variables—the position X“ of a point particle, some
kind of charged matter field like Dirac’s electron field ¥?, and so on—that obey
equations of motion or field equations of their own, possibly equations that again
involve the electromagnetic field. So one possibility is

J(z) = e / dr X°()6® (2, X (7)) (6)

together with Lorentz’ equations for the trajectory of the charged particle. Once
the problem is specified in this way the full set of equations goes non-linear and
it becomes non-trivial to find solutions. But a long time has passed since the
theory was first presented, and by now we know the key solutions. Here is a
list:

1. Spherically symmetric solution. This solution describes a spherically sym-
metric blob of charged matter with p(r > R) = 0; in the vacuum outside there is
a radially directed electric field. The solution is unique and static (independent
of time). If p = 0 the solution becomes trivial. The strength of the electric field
can be computed in an interesting way. Consider the total charge
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Now the total charges within two concentrical spheres with radii > R are equal
and the area of a sphere grows like r2. Therefore we conclude that

B(r) « rlz _ ®)

This is known as a Coulomb field.
2. Propagating waves. If J* = 0 we have

O = 070, Fag = —0" (95 Fya + 0aF,) = 0. )

Hence the components of the field strength obey the wave equation. Plane waves
are a somewhat un—physical special case, but with suitable boundary conditions
it is possible to get an arbitrary electromagnetic wave as a Fourier sum of plane
waves.

3. Generation of waves. This is a bit more difficult. The point is that accelerated
charges will emit waves. To see this, using a hand waving argument that is
substantially correct, place a charge at the origin, move it “suddenly” (at ¢ = 0)
and then let it rest at a new position. Taking for granted that signals cannot
propagate faster than light we can see what will happen: For r > ct the field will
be the Coulomb field centered at the original position, for r << ct it will be a




Coulomb field centered at the new position. The field lines must be continuous,
and if you try to match them together you will find a roughly spherical shell of
transversely directed electric field lines. This is the pulse of radiation coming
from the accelerated point charge.

Closer study reveals that electromagnetic radiation is always transverse, with
its intensity at its greatest in a direction perpendicular to the direction of the
acceleration as long as the velocity of the charge is small. When v & ¢ the
radiation will be concentrated in the forwards direction because of a relativistic
effect known from science fiction movies. If you have not seen enough of those,
think of this as an exercise in spacetime geometry. (To be given explicitly later
on.)

Returning to our spherical shell of radiation (at a distance r from the parti-
cle) we can estimate the strength of the electric field if we happen to know that
the energy density in the electromagnetic field is

1
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As the shell grows its energy density must go down in such a way that the total
energy in the shell stays constant. Hence E o 1/r. Alternatively, dimensional
analysis plus the assumptions that E be linear in a and e gives

eal
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The slow decrease with r, as compared to the Coulomb field, is an essential
feature. Radio, not to mention astronomy, is a possibility only because of that.
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I expect that you know Maxwell’s theory well enough to recognize the story so
far (except perhaps for the details of wave generation).

The purpose of this course is to bring your understanding of General Rel-
ativity Theory to about the same level. A curious remark that gives a hint
of what is coming is the observation that there is a third player in Maxwell’s
theory, apart from fields and charges. It is the metric on Minkowski space:

05 F* =n* 10205, (12)

where
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This is a piece of “background structure” that does not react to anything, even
though it certainly acts on the field in some sense. You can think of GR as an
attempt to redress this moral breaking of Newton’s third law.



Newtonian gravity

Maxwell’s theory has a mathematical limit known as the Newtonian limit, in
which the velocity of light is taken to infinity. All that then remains is a Coulomb
force between pairs of electrically charged particles,
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Coulomb’s law : Fo=—. (14)
T
On the face of it it looks very similar to
G
Newton’s law : Fy = % (15)

where G = 6.67 - 1071t m2kg=1s~2 (it is not very well known!). There is a
difference in strength between the two forces; between the electron and the
proton in a hydrogen atom we find
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Between the moon and the Earth I do not have an accurate figure, but it is
clear that

~ 100 . (16)
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Gravity always wins at large distances because electric forces tend to average
each other out. This cannot happen for gravity, for reasons that make Coulomb’s
and Newton’s laws very different from each other.
Set F' = ma. The first particle has mass m; and charge e;. Its acceleration
according to Coulomb’s law will be
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Newton’s law gives
1
a; = GmQT—Z . (19)

The wonderful thing is that this is quite independent of the parameters describ-
ing the particle being accelerated.

If we use a suitably accelerated system of reference to describe the motion of
the first particle then we will find that Newton’s force disappears altogether—
regardless of whatever mass or charge is carried by the particle whose motion
we are tracking. This is sometimes known as the Principle of Equivalence, and
dramatically illustrated by picturing Einstein trying the measure the gravita-
tional force inside a freely falling elevator. If you have a good memory for
electromagnetism you will recognize that there is some similarity to the notion



of gauge transformations of the vector potential; the vector potential can not
be measured because the transformation

Ao(z) = Ag(z) + 9aA(z) (20)

leaves the physics unchanged, even if the function A is chosen arbitrarily. So
one can set an arbitrary component of A, to zero.

We seem to be saying that the entire gravitational force can be transformed
to zero. Indeed we are. This is true at any given point, but not over any larger
region of space. Tidal forces are real.

It may be worthwhile to recall how tidal forces act. They are due to gradients
in the gravitational force and hence their dependence on distance is

tidal force ~ 0, Fy ~ 7_% . (21)
The strong fall-off property means that the tidal force on the Earth is mostly
due to the Moon, and not to the Sun. Anyway the effect of the tidal force is
to squeeze a sphere into an ellipsoid. The solid earth resists this force better
than the liquid oceans, and the result is tides—a measurable phenomenon quite
independent of any systems of reference.
To complete the Newtonian theory of gravity we need an equation relating
the gravitational potential to the matter density. Recall that the gravitational
potential first enters when we write the equation of motion in the form

.’IL'z = 6@(3:) - (22)

Because of the equivalence principle this equation is not directly relevant (unless
we assume something rather specific about the reference system). Only relative
accelerations between particles count. So, suppose a particle has the trajec-
tory z;(t) and a nearby particle has the trajectory z;(t) + £(t). The relative
acceleration is

Z; = 8,"1’(.73 + 5) - 6,‘1’(:1!) ~ 6,6](1’(33)5] . (23)

The equation that determines the gravitational potential is an equation for a
particular combination of the physically relevant quantities 9;0;®, namely

3
> 0:0,:® = A® =4mp (24)
i=1
where p denotes the mass density. This is Poisson’s equation, and it completes
the Newtonian theory. This particular way of looking at it will recur when
we come to Einstein’s equations later on. Eq. (23) will resurface as the non-
relativistic analogy of something known as the geodesic deviation equation.

Minkowski space geometry
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The point of the Special Relativity theory is not that spacetime is four di-
mensional. That was known long before H.G. Wells (1895). The point is that
spacetime carries a natural metric. Think of spacetime as a vector space with
an arbitrarily chosen origin. The “length squared” of a vector V¢ is chosen to
be

V> = VonasV?  where 1,5 = diag(—c?,1,1,1) (25)

and finally we set ¢ = 1 for convenience. For a vector that begins at (¢, z,y, 2)
and ends at (¢t + dt,x + dz,y + dy, z + dz) we obtain

dt
Ve = izlz = A= V| =—d? +da® +dy? +di . (26)

dz

In this (rather old fashioned) notation dz is the component of a vector that
starts at x. It is not an infinitesimal object in any sense.
There are three possibilities:

ds® >0 spacelike
ds® <0 timelike (27)
ds®> =0 lightlike (or null)

Depending on which case prevails the vector is said to be spacelike, timelike, or
lightlike (null) and the points connected by the vector are said to be at spacelike,
timelike, or lightlike separation. A curve is said to be spacelike, timelike or
lightlike if its tangent vectors are always spacelike, always timelike, or always
lightlike. (You can draw curves that are neither because ds®> changes sign. But
such curves turn out to be of no interest in relativity.) Each point serves as the
tip of two cones, the forwards light cone and the backwards light cone, whose
generators are the lightlike vectors emerging from that point. We note that a
timelike curve always goes “into the lightcone”.

When drawing pictures of spacetime it is convenient to adopt the conven-
tion that lightlike vectors always have a slope of 45 degrees. Such “spacetime
diagram” can be very useful, provided we remember that they distort the space-
time geometry in certain ways. Minkowski space geometry is very different from
Euclidean geometry in some respects. For instance, every pair of points can be
connected with a curve whose length is zero. However, if the separation between
the points is timelike there will exist a longest timelike curve between them, if
we use dr? = —ds? to measure length along the curve;

L:/ dr | (28)
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The notion of straight line does not really depend on the notion of length, and
is certainly meaningful in Minkowski space.

Some further terminology: A plane is said to be timelike if it contains two
linearly independent lightlike vectors, and spacelike if it contains no such vector.
Now let us look (in 241 dimensions for clarity) at a family of spacelike planes
that are orthogonal to the timelike vector

coshv
v* = | sinhv | . (29)
0

This vector is going lightlike as v — co. (Do not bother about normalization, or
multiply with a factor eV if it does bother you.) We can think of the planes as
“planes of simultaneity” for a worldline with tangent vector v®. The interesting
thing, that one sees from a picture, is that when v reaches infinity the normal
to the plane of simultaneity will lie in the plane itself. A plane is said to be
lightlike precisely if it contains its own normal vector—and that will then be
the only lightlike vector that it does contain.
Finally, some physical remarks:

e Photons, or electromagnetic signals, move along lightlike straight lines.
e Massive particles, people, and other creatures, move along timelike curves.
o Freely falling dittos move along timelike straight lines.

e All signals emerging from a point move on or within the forwards lightcone
of that point.

e And this will be true in all field theories too.

In particular, in field theories we often pose the problem of computing the field
in the future (or in the past), given its value (and that of its time derivative) at
some given time. In Minkowski space we can pose initial values on any spacelike
hypersurface, and compute the field within a region of spacetime with a lightlike
boundary. But these things will be discussed in more detail later.
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DIFFERENTIAL GEOMETRY

Tensors at o point

We now start a long mathematical detour aimed at giving us the tools to un-
derstand Einstein’s General Relativity theory. All that we have when we start
is a vector space T, and vectors belonging to it:

u, veT, a,beR = au+bveT. (30)

The real numbers here are called scalars. The vector space has (many) bases
such as {e;} where 1 <14 < n. Using one of the bases any vector can be written
in the form

n
u= Zuiei = u'e; (31)
i=1

where the last equality introduces Einstein’s summation convention, accord-
ing to which summation over pairs of repeated indices, one upstairs and one
downstairs, are never written explicitly. The real numbers u* are known as the
components of the vector relative a given basis. It is common practice to denote
the vector itself as u?, with the choice of basis understood.

Now change the basis with an arbitrary linear transformation

{ei} — {fi/} : fy = eiji, . (32)

The vectors themselves do not change when the basis is changing, so to com-
pensate the change in basis the components must change too:

ul s Ut = Aijuj (33)
where A is some matrix. To see which matrix, note that
u=ule;=u'fy = eiji,Ai’kuk . (34)
This has to work for all vectors, so it implies that
M, A, =07 . (35)

Hence M and A are each other’s inverses.

Given a vector space T with basis vectors e, ez, e3 say, we can construct a
new vector space T ® T', where T is a copy of T and the product vector space
has the basis



eie’; eey ee's
ege’l 62612 62813 . (36)
e3e’1 63612 e3e’3

It is clear that we can apply this idea to N-dimensional vector spaces and obtain
N2-dimensional and indeed N™-dimensional vector spaces with n an arbitrary
integer, by taking repeated tensor products. Such a vector space is known as the
vector space of rank n tensors. The components of these vectors are given by %
for rank 2, t¥7* for rank 3, and so on. There will be natural occurring subspaces
of symmetric and anti-symmetric tensors. The transformation properties of the
components t**-- are defined by the transformation properties of .

The next key idea is that given a vector space T we can consider the space
of linear maps from T to R as a vector space V in its own right, with dimension
equal to that of T. That is to say,

veV&ueT = v(ueR. (37)

(Compare with “kets and bras” in quantum mechanics.) Given a basis e; in T
there exists a basis w’ in 'V defined by

wi(e;) = 5; . (38)

An arbitrary vector v € V can be written as v = v;w'. This implies that

v(u) = v;w'(ue;) = viuwi(e;) = viu' € R. (39)

We can repeat the tensor product construction starting from the dual vector
space V. This gives rise to tensors called covariant tensors, while the tensors
arising from T are called contravariant. The transformation properties of the
covariant tensors are given by the transformation properties of the contravariant
ones.

Components Basis
. ., — —
Contravariant | u® = A’;u/ ey =e; A7,
. _1 y -1 -1 .
Covariant vy = AT | wh = A

The transformation rules are such that v;u’ is an invariant scalar. Note that an
expression like >~ ufu® is not a scalar under general linear transformations. The
rule is that you can contract one upstairs index with one downstairs, but in no
other way.

Finally we come to an idea that comes as an “extra”. The fact that it is an
absolutely key ingredient in GR should not obscure the fact that tensor calculus
as such does not need it. The idea is that a symmetric second rank tensor whose
components g;; form an invertible matrix can be used as a metric tensor, giving
a canonical identification of the vector spaces T and V:
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u; = g;ju’ are the components of a covariant vector. (40)

We will think of u; as identical with u? except that it has had its index lowered.
The inverse of g;; is denoted g/ and can be used to raise indices in the same
way.

Of course, the main reason why we want a metric tensor is that it enables
us to define the length or norm of a vector through

||u||2 =g(u,u) = gijuiuj . (41)

In Euclidean geometry the metric tensor is simply a Kronecker delta; in fact
then its presence in the equations is easily overlooked (and one tends to use
abbreviations like u’d;;u/ — u'u?, which is OK if we do rotations only, since
they are linear transformations that preserve the form of d;;).

The main points of this—sketchy but nevertheless fairly complete—discussion
are that

e So far, everything concerns vector spaces only.

e The metric enters at a late stage.

In this setting the metric is a rather harmless object that, following diago-
nalization and rescaling of the basis vectors, can be written in one of the
forms 9i; = dla‘g(la ]-5 1) 1)5 9i5 = dla‘g(_la 17 ]-5 1)7 9i5 = dla’g(la _]-a _]-a _1)5
or g;; = diag(1,1,—1,—1). Only the number of minus signs matters. Note
that this mathematical fact in a sense mirrors that of Einstein’s equivalence
principle.

Differentiable manifolds

Not to beat around the bush, let me give you the definition of a differentiable
manifold as a quotation from Hawking and Ellis (The Large Scale Structure of
Space-Time, a standard treatise from 1973):

“A C" n-dimensional manifold M is a set M together with a C™ atlas {U,, o},
that is to say a collection of charts (U, ®,), where the U, are subsets of M
and the ®, are one-one maps of the corresponding U/, to open sets in R™ such
that

(1) the U, cover M, i.e. M = UslUy,

(2) if U, NUg is non-empty, then the map

Bo0®5" 1 (U NUs) = Bo(Ue NUp) (42)

is a C" map of an open subset of R™ to an open subset of R™.”

11



C" means “has derivatives up to order 7. Even so, at first sight the definition
does not ring many bells with the uninitiated. However, standard treatises tend
to be like this.

Actually it is all very simple and transparent. Let the manifold be S2, that
is a two dimensional sphere. You can buy an atlas of this manifold in your local
book store, and indeed it consists of a collection of charts, all of which define
some map from a part U, of S? to R2, i.e., to the flat pages. Inspection reveals
that once you have a chart any point P in the manifold can be represented by
its coordinates, namely the standard R? coordinates (with origin in the lower
left hand corner of the page, say) to which P has been mapped. Thus the
coordinates (z',z?) are labels (names) for points.

If you browse through your atlas (assumed to be a good one) you will find
that for any point P on the sphere, there is a chart such that P appears on that
chart. (Even for fairly obscure points on S? such as those on Novaja Sembla.)
This is condition (1) in the definition by Hawking and Ellis.

Some points, such as (probably) those on the Azores, occur on several charts.
This brings us to condition (2) in Hawking and Ellis, which is there to ensure
that the charts are “nice” and easy to work with. Technically, assume that the
Azores figure on both page 28 and page 53, and let P be a point on one of these
lovely islands. On page 28 we have

z! = 21(P) 1,2
22 = 22(P) & P=P(z,z°) (43)
(since the map ®ag is one-to-one). On page 53 we have

7

o P =P(z",2%) (44)

In the overlap region of the two charts (including the points on the Azores) we
get

' = 2'(P) = 2" (P(z",2%)) = 2' (=", 2%) (45)
and similarly 2 = z2(2', 2% ). Together these two functions define a function
from R? to R?, and condition (2) says that this function is r times differentiable.
If this were not the case, you probably would not have bought the atlas in the
first place.
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We are now in a position where we can define differentiable functions from
S? to (say) the real numbers. This took some preparation because calculus is
something that goes on in R™, so that a priori we could not do it. But now
it is easy: A function f : S? — R is said to be differentiable if the function
F : R? = R is differentiable in the standard sense, where F' is defined by
F(a',2%) = f(P(z',2?%)). Here we are using a special chart that includes P.
If P is on the Azores, or generally if P belongs to region where several charts
overlap, then f can be represented by a quite different function F' : R?2 = R,
viz.

)= f(P(a",2) . (46)
Precisely because of condition (2) the function F' is differentiable (r times) if
and only if F' is, so whether f is differentiable or not does not depend on the
choice of chart. The atlas is consistent.

The space R"™ can be covered with a single chart, while an atlas of S?
must contain at least 2 charts. The atlas you bought in the bookstore has
more though, and indeed an atlas of R™ may also contain several charts (say,
including polar coordinates).

The differentiability, or not, of a function is independent of the charts used,
but it may depend on the atlas. An amusing fact is the following: We can ask
whether it is possible to construct an atlas of R™, not including the standard
(identity) chart, such that a function f that is not differentiable in the standard
sense becomes differentiable with respect to the new atlas. The answer, given
in the ’80ies by Donaldson, is “no” if n # 4 but “yes” if n = 4. But you need
not worry about this for the present.

What you should worry about is polar coordinates. In relativity we fre-
quently know a spacetime only in some special chart, and we must be careful
not to draw conclusions that in fact depend only on the peculiarities of the
given chart. So suppose that we knew the plane only in the (r, ¢)-chart. How
would we recognize it? The chart in itself is always to be thought of as an open
set (not including its boundaries), and in fact it does not cover quite all of the
plane. Suppose we are told that, if a curve hits the boundary at ¢ = 2, it pops
up again at ¢ = 0, with the same value of r. This is beginning to look like a
cylinder, or a cone, if we add points along the boundary of the chart and do
the necessary identification—except that we do not know what to make of the
boundary at r = 0. But suppose further that we are told about the length L(r)
of certain closed curves, defined by constant values of r» # 0. What we are told
is that L(r) = 27r. Then we can see that our space is neither a cylinder nor a
cone. It can be a plane (a special, smooth case of cone if you like). If we add
a single point, at r = 0, to our space then the latter becomes the usual plane,
at least in a topological sense—some further information about distances along
curves of constant ¢ is needed to clinch matters. The lesson is that delicate
attention to the details of what we see on the chart is needed, before we can say

!
F'(z" | 2?
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what the actual manifold is.
Tensors on differentiable manifolds

Recall that

e Vectors (and tensors) live in vector spaces.

e A differentiable manifold is typically not a vector space.
Add to this that
e We want to define vectors (and tensors) on differentiable manifolds.

How do we do it? The solution is to define a vector space T, called tangent
space, at every point of the differentiable manifold. We can then construct
tensor products T ® T, dual vector spaces V, etc., in an obvious way—again at
each point separately.

The intuitive idea that defines tangent space is very simple. The actual
definition used by mathematicians looks more scary at first sight. This happens
because the mathematician (and the relativist) wants the definition to work
without reference to anything outside the manifold itself—if we study a curved
surface we do not necessarily regard it as “sitting inside” flat 3-space. This
viewpoint will really pay off when we study curved spacetimes (such as our
Universe) that indeed do not sit inside anything else.

The intuitive idea is this: A tangent plane is a plane that just touches a
curved surface at a given point. Suppose that the surface sits inside a flat 3-
space to begin with. Any two points on a curve define a line. In the limit when
these points coincide, this line tends to the tangent line of the curve, at the
point. Similarly, three points on a surface define a plane, and when these points
all tend to P, we get the tangent plane at P. All is well so far. But we want
tangent vectors, of different lengths maybe, not just tangent spaces. Therefore
we take “curve” to mean parametrized curve z'(c); a curve is defined as a map
from (a segment of) the real line to the manifold. If you like, we move along the
curve with some velocity, “time” being measured by o. We define the tangent
vector of the curve z¢(o) at the point z'(0) as

da?
do |o=0 ’

’l)i

(47)

Now change the curve to z?(co’) = 2°(%), using the same functions z*. It traces
through the same points as the first curve, but it is parametrized in a different
way. It has a tangent vector at ¢’ = 0 that differs from the original with a factor
of 2:
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3 X3
=& _dodr g (48)
do'jo'=0 do' do |o=0
A vector in a tangent plane will always be the tangent vector of some curve at
the point P.

The generalization to higher dimensions is clearly trivial. But it is less trivial
to drop all the references to the flat space in which the curved space is sitting.
While our definition of tangent vectors is all right at is stands, a further step in
an abstract direction will prove useful.

The key observation is this: There is a one-to-one correspondence between
tangent vectors of curves on the one hand, and derivatives of functions in the
direction of the curve on the other. With everything evaluated at P as usual:

df(z(0))  _ da’ Of

do  |o=0 do O0x'|s=0 v'oif (19)

We know about functions already, so we can define vectors as directional deriva-
tives. Given a coordinate system, our definition allows us to express any tangent
vector as

v =0%0; . (50)

Note that we are relying on a special basis in tangent space, called the coordinate
basis. Given coordinates (z!,z2,z%), say, the basis consists of the three vectors

d ) )
ot %2Taz %=z

An arbitrary vector can be expanded as v = v?9;. The basis vectors are in fact
directional derivatives along a very special set of curves, namely the coordinate
lines.

Our definition of tangent vectors v € T is nice when we want to see how
components change if we change coordinates. The coordinate basis changes,
while the vector itself is the same as ever. Suppose we have v expressed in the
coordinate basis for coordinates z?, and change to new coordinates =¥ = z ().
Clearly

(91 = (51)

. Oz’ y
v=00;= U,@m 9 =00y . (52)

Ozt Jzd’
Hence—and this is a key formula—the new components are
, ozt
[ 1 — Vi
v (z') = 507" (z) . (53)

As an example of this, let us transform from polar to Cartesian coordinates
on the plane. So the new coordinates are given in terms of the old by (z =
7 cos ¢,y = rsin ¢) and we obtain
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oz oy
= —0; —_— = — T 4
0p 6¢8 + 6¢8y YOy + 0y (54)
Oz Oy, x Yy
Or = 8Ta$ + 6T6y = \/maw + \/W@/ . (55)

The components of the “old” basis vectors 0, and 04 are thereby given in terms
of the “new” basis vectors J, and 0.

It is important to observe that a much more interesting meaning can be given
to the equations ¢ = z? (z). Assume that we use the same coordinate system
all the time. Let 2 be the coordinates of the point P, and assume that the point
P itself is moved to the point P’ whose coordinates, in the given coordinate sys-
tem, are z' = z* (z) (i.e. whose coordinates take these values). Going on in this
vein, equation (53) then defines a tangent vector at P’ as a function of a tangent
vector at P; the catch phrase for this phenomenon is that “the (contravariant)
vector moves with the map”. This kind of quite general transformations of the
manifold into itself used to be called active coordinate transformations; in most
of the modern literature they are called diffeomorphisms. We will come back to
them soon.

Having defined contravariant vectors on manifolds, as well as the tangent
spaces T (one at each point), we can define tensors of arbitrary rank on man-
ifolds, as vectors in the linear spaces T, T® T, T® T ® T, and so on (again
at each point of the manifold). We can also define the dual space V, the linear
space of linear maps from T to R, again at each point. It is known as cotangent
space. Vectors in V are called covariant vectors or one-forms. In general a co-
variant tensor is a tensor whose components have indices downstairs. Given the
coordinate basis for the tangent space, there is a natural basis in the cotangent
space called dz?,

dz*(8;) = 6} . (56)

A warning: When I use the notation dz?, it often denotes something completely
different, namely the components of a tangent vector defined at the point whose
coordinates are z*.

Distances and metrics
The time has come to think of distances, at first in vector spaces, where the
distance between the tip and the base point of a vector is called its norm. There

are many ways to define that. If the components of x are (z!,22,...,2") then
the norm can be defined as

lIx|| = (j&* P + 227 + ... + |2"|P)* (57)
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for any integer p. Natural choices are p = 2, which leads to Pythagoras’ theorem,
and p = 1, which is useful if you are a taxi driver on Manhattan. In the
nineteenth century Riemann realized that in differential geometry (that he was
inventing) p = 2 wins hands down. Using a little more generality, he defined
the length squared of a tangent vector as the scalar

It]]* = gi;t't (58)

where g;;(x) is a symmetric non-degenerate (invertible) tensor defined at each
point of the manifold.

In a vector space we can diagonalize a symmetric matrix, and rescale the
basis, so that the metric takes the form

gij = 0ij (59)

—and we are back to the previous p = 2 expression. (Actually, if some, let us
say one, eigenvalue is negative this is not quite true. Then we get instead that
9ij = Nij, Where 7;; is the usual Minkowski space metric. Spaces for which this
happens are called Lorentzian.) Minor caveats aside, on a general manifold it
is still not true that we can find a smooth coordinate transformation such that
9;j(x) takes a diagonal form at every point. That is a very interesting fact and
leads to the theory of curved spaces.
About notation: Instead of eq. (58) one usually writes

ds® = gy;dz'da’ | (60)

and means by this exactly the same thing—the length squared of a tangent
vector at the point z with components dz?. There is a possible confusion here
because in other contexts dz’ denotes a basis element in the cotangent space.
Now one can interpret eq. (60) differently, as that operator acting on T @ T
which, when acting on t ® t, yields the length squared of the vector t. But I do
not think that one gains much compared to the old-fashioned interpretation of
the formula that I tend to use.

Once we have defined the length of all tangent vectors there are many things
we can do. First of all we can define the length of any curve. Let the curve be
2%(0) and let it connect the points P; (at 0 = g1) to P, (at 0 = 02). To get its
length, we simply sum the lengths of its tangent vectors:

72 o2 dzt dzJ
L= ds = ii— ——do . 1
/,1 y /,,1 9ig do do 7 (61)

Now you may (and should!) worry that the length depends on how the curve
was parametrized—after all the lengths of the tangent vectors are affected by
the parametrization. There is nothing to worry about though. Change the
parametrization; let
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o' =d'(o) . (62)

Then z?(0’) and 2%(0) count as different curves, even though they pass through
the same points in the manifold. Their tangent vectors will differ:

det  do dz

T g . 63
do! do' do (63)
But the lengths of the curves agree:
P dzi dzi P \/W do
P L N T
/P1 94 4ot do’ P, Y4 4o do do'
(64)
Y4 do *° =

So our definition of the length of a curve is a good definition.

Naturally we also want to know, given two points P, and P», which particular
curve between them is the shortest, and what its length may be. The shortest
curve is called a geodesic; later we will give a different but equivalent definition.

Some complications may occur: Given two points it is is not automatic that
there exists a geodesic between them, or if it does that it is unique. An example
of the latter difficulty occurs on the sphere, where the geodesics turn out to
be arcs of Great Circles—and there are many of those connecting antipodal
points on the sphere. In a different direction, in a spacetime (a Lorentzian
manifold) there is never a shortest curve between two points, but there may be
a longest timelike curve. (The alternative definition of geodesics, still waiting
in the wings, will save the situation in general.) Since the tangent vector of a
timelike curve has negative norm squared, its length is defined as

dzt dxi
—9ij 0o - (65)

Note the minus sign. With spacetimes in mind we modify the first definition of
a geodesic slightly:

e A geodesic between two points P; and P, is that curve z¢(o) that extrem-
izes the integral (61).

In spacetimes, if we consider timelike curves, we sneak a minus sign into the
square root.

What does “extremize” mean? Quite generally, if 2(o) is a function, with &
denoting its derivative with respect to o, and if L is a function of z and #, then
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S= / " Lz, #)do (66)

is a function of the function z(c). (L now stands for “Lagrange” rather than
length.) The functional S has an extremum if small changes in z(o), that is
z(0) = z(0) + 6(0), do not change the value of S.

We have landed in a problem from analytical mechanics. A reminder: Let

L(z, &) = %jﬁ V() . (67)
Then a small change in (o) causes a small change in the action S, as follows:
o2 g2
38 = / dLdo = / [ma’:én’v - d—V(Sx] do . (68)
o o1 dz

Performing a partial integration—which is allowed since the endpoints are not
varied, dz(o1) = dz(o2) = 0, with the form of dz otherwise arbitrary—we see
that

o2 dv
55 = — / [m&i + —] Swdor . (69)
o1 dx
This will vanish only if the integrand is zero, which leads to the equation of
motion for z. Solve that equation and you have the function z(o) that we asked
for.

In our case we want to extremize the integral (61). This is easy—but not
the first time you do it! You start out with

o9 i
51:/ %Mda. (70)
o1 vV ImnTT™
Then you use a trick. The parametrization of the curve is so far arbitrary. By
changing o, we can change the length \/g,,,2™2" of the tangent vector until it
equals 1, everywhere along the curve. What this means is that the parameter
measures the actual length of the curve—we are going to exploit the fact that
the distance between two points depends on the path travelled between them,
but not on the velocity with which the path is traversed, so that we can choose
a standard speed. What this does for you is that you can forget about the
denominator in (70). An equivalent procedure is to start out with the integral

a2 1 L
IZ/ Egij.i'zm']d(f, (71)

1

keeping the extra constraint in mind. Anyway we do it, we get

2 . i 1 .
6T = / [g,.j(ww + 502t dygijati | do (72)

1
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and after a partial integration and some tidying up we find that this vanishes if
and only if

i1 i
gi; % + 5(3191'19 + Okgij — Oigjr)il i =0 . (73)

This is the geodesic equation. It is very important, so we write it once again,
now with one index raised:

T%1 1 ] «q .
i+ igzm(ajgmk + Ok gmj — 3mgjk)$]ib’k =0. (74)

It gives the extremal—usually the shortest—path between two points. Note
that—as required by our derivation—the geodesic equation has the property
that

i* = 4'g;;47 = constant . (75)
We can choose the parameter o so that this constant equals one, which means
that o equals the arc length of the curve. In spacetimes, for timelike curves,
there are minor sign changes in the derivation but the geodesic equation is
the same. It now gives the longest curve between two points, parametrized by
proper time.

Diffeomorphisms

We are interested in how things transform if we change coordinates, and even
more interested in what happens if we move the points of spacetime around
with an active diffeomorphism. Recall that, in a coordinate transformation, x
and z' = z'(z) are different coordinates for the same point, while, in a diffeo-
morphism, 2(P) and z'(P') are coordinates for different points, and the points
are transformed into each other according to P — P’ : z' = z'(z). These are
two different ideas expressed by the same formula. Here we take the second
viewpoint, because it is of fundamental importance in Relativity theory. Indeed
the name, “General Relativity”, refers to the role played by diffeomorphisms in
the foundations of the theory.

We transform not only points but also functions. We are only interested in
scalar functions. They are defined by their behaviour under diffeomorphisms:

¢(z) = ¢'(a') = ¢(a) . (76)

This is to say, given ¢, there is a new function ¢' that takes the same value at
P’ as ¢ did at P.
Vectors are objects that transform according to
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Ve (z') = Bxﬁ (x) contravariant vector (77)
n_ 02P :
Uy (2') = pyer —Ug(z) covariant vector (78)

—and what is new, compared to what happens in vector spaces, is that vectors
are moved by the diffeomorphism so that not only are their components shuffled
around, they are also moved to a another tangent space, sitting over another
point in the manifold. The main point is the same though, namely that U, V¢
is a scalar function:

Us 6:vﬂ’ ™
Ox® Ox”
Covariant, contravariant, and mixed tensors of higher ranks transform in the
way that should by now be obvious.
If we try to do calculus on the manifold, the first observation is that the
gradient of a scalar behaves nicely. A simple calculation shows that it transforms
like a covariant vector:

UV (') = SV (2) = UiV (2) = UsVP(z) . (79)

00/ (&") = 220060/ (2)) = 2 0i) (50)

But in the next step there is trouble: The “gradient” of a vector is not a tensor:

, 0z° ox”
0Ty () = s (i) =
(s1)

oz ozP  %x"
= 57 V@) + o e V() -

The last term would not be present, did this object transform like a tensor.
This is a serious problem because, if T%? is a tensor, T“B(?aUg is not a scalar.
This makes the object 0,Up an essentially useless one. (As an interesting side
remark, you can easily check that the antisymmetric combination 0,Ug — 03U,
is a tensor. So there will be some things that one can usefully do without further
definitions.)

As things stand then we do not have a useful notion of derivative. Another
way to see that something is missing is this: We have defined tangent vectors,
and tangent spaces, at each point separately. But this raises the question how
we can recognize a “constant” tangent vector, or more generally how we can
compare tangent vectors at different points—which is what we need to do when
we take derivatives. In a flat space it is obvious how to move vectors around,
but on a general manifold it is not obvious at all. If—although we really do
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not want to—we think of the vector at P as a vector in a flat embedding space
containing our manifold, and if we use the flat space rules to move it to the
new point P, then we find that the resulting vector does not lie in the tangent
space at P'. We can repair this by brute force, if we project the vector at
P' orthogonally down to the tangent space (relying on the metric on the flat
embedding space to define orthogonal). In this way we have at least a definite
procedure for how to move a vector from P to P’, and we might tentatively
say that two vectors at different points are equal if they can be transformed
into each other in this way. But this would not work, because if we move the
resulting vector at P’ back to P using the same rules it will typically not agree
with the original there. Nevertheless, we need a definition of “parallel transport
of a vector on a manifold”, and the definition that we will eventually adopt will
be close to our first idea, with the crucial extra input that the projection down
to the tangent space should be done “continuously” along some specified path
connecting the two points. Precisely what vector one ends up with at P’ will
then depend on the path choosen. This is unavoidable (unless the manifold is
flat), and in fact the precise way in which this happens will carry important
information about the manifold itself.

Parallel transport

We will now define parallel transport of a vector properly. We begin with the
notion of a covariant derivative of a vector. Our original problem was that 8,t?
does not transform like a tensor. So, we simple introduce an object F”aﬁ and
call it the affine connection. (It will be called the “Christoffel symbol” soon,
when we add an extra condition to make contact with our previous discussion.)
Then we define the covariant derivative of a vector as

Vat? = 0,t° + T8, 7. (82)

By choosing the transformation properties of the affine connection suitably—not
like a tensor !—one can ensure that the covariant derivative is a tensor. We can
do this by hand, just so that any unwanted terms drop out from the transforma-
tion rules for V,t%. Note that, at this point in the story, the affine connection
does not have any other properties, so it is not a uniquely defined object by any
means. It is a new structure: We start in any given coordinate system on an
n dimensional manifold, and choose (arbitrarily) n® functions to represent the
connection. The tranformation rules will tell us what the connection becomes
in any other coordinate system. Note also that another notation for derivatives
is

dat? =P, Vot? =45, . (83)

The notation I am using seems to be the winning one.
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We will need the covariant derivative of every kind of tensor. By now there is
no choice about this, if we insist on Leibnitz’ rule for derivatives. The covariant
derivative of the outer product of two vectors is

Vo0Pq") = VapPq" +9°Vaq” = 0,0°q") + T2 ;p°q" + 17, 0°¢° . (84)

The covariant derivative of an arbitrary rank two contravariant tensor is there-
fore

VoTPY = 8, TP + TP T + T7 ;TP . (85)

The generalization to arbitrary rank should be obvious. If the indices are down-
stairs work things differently, but again the result is forced: We first note that

Voo =0n¢ . (86)

The covariant derivative of a scalar is the ordinary derivative—it already trans-
forms correctly. Now, given a covector p, and a tangent vector ¢* we know that
Paq® is a scalar. Therefore, again by Leibnitz’ rule,

Va(psd®) = Vapsd® +psVad® . (87)

But we have already agreed that the left hand side here can be written as an
ordinary gradient. So, writing out the covariant derivative of the covariant
vector and afterwards rearranging terms, we get

¢ (Vaps — Oaps + I7.5py) =0. (88)

This must be true for all choices of ¢®. Therefore

Vaps = Oapp —T7 5Py - (89)

One can check that this transforms like a covariant tensor. A little extra work
like this, and we can write down the covariant derivative of an arbitrary tensor:

VaTﬂ’y'l'L',,___ _ 8aTﬂ’Y'p' o+ FﬁaéTd’Y..l.wm + F’YaéTﬁé.ﬁy___ +...

v.

(90)
_FaauT,B’Y.;u... - IwauTﬁ’yﬁa'... T

This much follows from our definition of V,t? and Leibnitz’ rule.

We can now define parallel transport of a vector along any given curve z%(o)
by insisting that the covariant derivative evaluated in the direction of the tangent
vector of the curve vanishes:

PPVt =0 (91)
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or, written more explicitly

dz? dt*(z(o)) de?

E(@gta +T%,t7) = I +I'%, (w(a))%t”’(x(a)) =0. (92)
This is a set of coupled ordinary (as opposed to partial) differential equations

and it follows that there is a unique solution for t*(z(c)). That is to say,

e Any affine connection gives a unique prescription for parallel transport of
a vector along a specified path.

In practice it may be hard to solve eq. (92), but that is another thing.
But what kind of an object is the affine connection? So far its only property
is that it transforms in a funny way. Let us add one extra condition:

[Va,Vglp=0. (93)

An explicit calculation reveals that this is a non-trivial statement because the
gradient of a scalar is a vector. In effect

VoVt = 0,080 — I‘Vaﬁ&yqﬁ . (94)
To make the commutator vanish it will be necessary and sufficient to set
I"Yaﬁ = I"Yﬂa . (95)

From now on we assume this to hold. To make sure that we can so assume, we
must check that this condition holds in all coordinate systems if it holds in one.
This is not obvious because the affine connection is not a tensor, but once the
transformation rules for I'" 5 are given explicitly, it is easily checked.

We will add another and more interesting condition, that will eventually
enable us to tie the affine connection to our intuitive understanding of what
parallel transport of vectors around curves in a curved space ought to mean.
We require that the length of a tangent vector does not change under parallel
transport. In equations, we require that

VatP =0 = V,(tPgs,t") =0. (96)

If we write this out and insist that it holds for arbitrary tangent vectors, we
deduce that

Vagsy = agpy — Tapgsy — Targs =0 . (97)
Remarkably, eqs. (95) and (97) can be solved explicitly for the connection. This
is a good exercise, and the result is

ad(

1
Fagq = 5!] 968,y + 967,58 — 9B.6) - (98)
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We learn that given a metric tensor, there is a preferred affine connection, and
hence a preferred notion of parallel transport, available to us.

To summarize, the following conditions determine the covariant derivative
uniquely:

i): Voo = 049

ii): Votf = 9,t° + ¥ t7 transforms like a tensor
iii): Leibnitz’ rule

iv): I'%, =T,

v): Vaggy =0.

An affine connection that obeys conditions iv) and v) is often called a Christoffel
symbol; it can be solved for in terms of the metric tensor.

One more thing, with or without condition v): Choose any tangent vector
t* at some point P. There will be many curves %(o) whose tangent vectors at
P equal the given vector;

dz®

— =t*. 99

do jat P (99)
Now we can ask, is there a curve z%(o) such that the above is true, and such
that if we parallel transport t* along the curve then the vector that results will
agree with the tangent vector at every point along the curve? The question
leads to an equation:

de? _ dz*  d’z® dzP dz”

do ¥ do = do? T P dy e O (100)
with the initial condition (99). This is a second order ordinary differential
equation for £%(o), and it always has a solution (for some range of o). Such a
curve is, as it were, the straigthest possible curve through P in the direction of
t*, and is called a geodesic with respect to the affine connection. If the latter
is the Christoffel symbol—as, from now on, we always assume—then it is also a
geodesic in the sense of being a curve with extremal length, the way we defined
geodesics earlier on. See eq. (74) for this. Evidently

PPV =0 (101)

is a particularly memorable form of the geodesic equation.
The Riemann tensor

The Riemann tensor is an object that helps to quantify the path dependence of
parallel transport. It first turns up in the equation

[V, Vo]t = R%_ 5t° . (102)
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The left hand side is a tensor depending linearly on t*, so therefore Raﬁwd is a
tensor, too. We have assumed that the commutator of two covariant derivatives
vanish when acting on a scalar, but this time we get a non-zero result. An
explicit calculation—that you must do yourself—shows that

R%.5 = 0, I'%3 — Os1'% 5 + FO‘WF“M — "‘MF”W . (103)
Evidently, the equation that you should commit to memory is (102), not (103).
Since I' = I'(g,0g) we have R = R(g,0g,00g), or in words this is a function
of the metric and its first and second derivatives (and it is linear in the second
derivatives).

Directly from the definition one can show

Raﬁ;u/ = _Raﬁuu = _Rﬂauu (104)
Proof: The first is obvious, for the second consider [V, Vs]gag = 0.

Raﬁ,uu = Ruuaﬂ (105)

Proof: Follows from the previous and the following equation.

Raﬂpu + Rauﬁu + Ram/ﬁ =0 (106)
Proof: Consider the Jacobi identity [V, V,], V,]¢ = 0.

VryRaﬂuy + V,,Ragfw + VuRag,,,y =0. (107)

Proof: Consider the Jacobi identity but with a vector for the derivatives to act
on.

The first three equations imply that the number of algebraically independent
components of the Riemann tensor is one (in two dimensions), six (in three),
or twenty (in four dimensions). The reason this happens is as follows: Let the
dimension be n. Because of eq. (104) we can think of the Riemann tensor
as an n(n — 1)/2 x n(n — 1)/2 matrix, since each anti-symmetric index pair
can assume n(n — 1)/2 different pairs of values. Because of eq. (105) it is a
symmetric matrix. The number of independent components is now 1, 6, and 21
for n =2, n = 3 and n = 4, respectively. Eq. (106) turns out to be empty for
n = 2,3 and gives one extra condition for n = 4. The fourth of the identities
obeyed by the Riemann tensor is known as the Bianchi identity.

We can perform two index contractions. The tensor

R,, = R* (108)

pav

is necessarily symmetric, and is known as the Ricci tensor. The scalar

R=R", (109)
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is known as the curvature scalar. Another tensor of interest is the Finstein
tensor

1
Gu =Ry — §Rg‘“’ . (110)

This particular combination is important because the Bianchi identities imply
that

V,.G" =0. (111)

It gets its name because it occurs in Einstein’s field equations (as we will see).
Two dimensional spaces

What you need now is practical experience with Riemann tensors, and what they
tell us, on some simple spaces. The simplest examples are of course flat spaces,
where the metric tensor can be chosen to be independent of the cooordinates.
Then the Christoffel symbols are zero, and so is the Riemann tensor. Famously
the converse conclusion can be drawn—it the Riemann tensor is zero then the
space is flat. Now let us consider a family of two dimensional spaces, described
using coordinates (r, ¢), and set

ds® = d® + PP(r)de> o gij = ( (1) f??r) ) . (112)

At the outset we do not assume anything about the function f(r) (except dif-
ferentiability), nor about the range of the coordinates. We want to compute
the Riemann tensor for such spaces. There are many tricks (and computer
programs) for doing this, but on this occasion you should do it in an entirely
straightforward way.

You will find that the only non-vanishing Christoffel symbols are

!
_ 6 _po _ I
I‘T¢¢_—ff' FM_I‘W_?, (113)
where f' is the derivative of f with respect to r. Up to index permutations, the
only non-vanishing component of the Riemann tensor is

Ry s=—ff". (114)
The non-vanishing components of the Ricci tensor are
— f” —_ n 11
Rrr - _7 Rd)d) - _ff ( 5)

and finally the curvature scalar is
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fll
R=-2—. (116)

f
Actually, in two dimensions—and only in two dimensions, where there is only
one independent component of the Riemann tensor—we can express the full

Riemann tensor as a function of R:

R

1
= ER(ég‘é? — 6208 . (117)

(The right hand side has the right index symmetries and you can check that
R*P op = 1) In two dimensions, all the information about curvature is in one
function, the scalar curvature.

Now let us look at some interesting special cases, namely those where R is
constant. First, suppose R = 0. Then f” = 0, and there are essentially only
two solutions:

fry=r or f(r)y=1 = R=0. (118)
If f =1 we have

ds® = dr? + d¢* . (119)

If we choose the coordinate ranges —oo < r < 0o, —0o < ¢ < oo this is a flat
plane expressed in Cartesian coordinates. But we do have other options. We
can set —oo < r < o0 and 0 < ¢ < 27 and then assume periodicity in ¢. We
get the same metric, but we are looking at a cylinder. A cylinder is intrinsically
flat, basically because you can wrap a flat paper around it without wrinkling the
paper. No local measurements of angles and lengths can distinguish between a
cylinder and a plane—although global measurements can do it, like finding that
there are closed geodesics (going round the cylinder).

If you are disturbed by the fact that our formalism does not distinguish
(locally) between two objects that are in fact different, then you have missed
the point: The formalism as developed so far makes use only of the intrinsic
geometry. It makes no reference to the way our spaces are sitting inside some
other (say, flat) space. And, apart from global properties, that is the only way
in which the cylinder and the plane differ. There do exist tools to describe this
difference (by studying the behaviour of the normal vector of the surface), but
here we leave this aside. When we do adopt the intrinsic viewpoint, we can in
fact set 0 < 7 < 27, 0 < ¢ < 27 and periodic in both coordinates. This is a
flat torus. It cannot be made from flat paper because it cannot be embedded
in a three dimensional flat space. But it is a perfectly well defined flat manifold
anyway.

Now suppose f(r) = r. Then

ds® = dr® + r?d¢?* . (120)
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Ifweset 0 < r < 00,0 < ¢ < 27 and then assume periodicity in ¢ this is the flat
plane in polar coordinates. (And it makes no sense to consider —oo < r < 00,
basically because the expression for the metric misbehaves at r = 0.) But there
are other possibilities. If we set 0 < r < 00, 0 < ¢ < 37” and then assume
periodicity in ¢ this is in fact a cone, which is again flat. (Can be made from
flat paper without wrinkling, that is, without disturbing the local geometry.)
This time, if we try to add a point at r = 0, to complete the description given by
our coordinate system, we find that the manifold becomes somewhat singular
at that point, which is of course the tip of the cone.
Next we turn to the case that R is constant and positive, say

R=2 = f'=-f. (121)
With the standard solution f(r) = sinr we get

ds® = dr® + sin® rd¢?* . (122)

Ifweset 0 <r <, 0<¢< 27 and then assume periodicity in ¢ this is in fact
a round sphere of unit radius. If you do not recognize it, change the name of r
and call it 8. If your recollection of spherical polar coordinates does not help,
then you can always parametrize the surface X2 +Y2 4+ Z2 =1 as

X =cos¢gsinr Y =singsinr Z =cosr, (123)

with r and ¢ in the ranges specified, and work out the metric on the sphere as
a quadratic form in (dr, d¢) starting from

ds® =dX? +dY? +dZ* . (124)

That will reproduce eq. (122).

Note that closed geodesics (i.e., circles) of constant 7 shrink to zero length
as we approach r = 0 or r = 7. We cannot extend the range of r beyond
these points. The coordinate system misbehaves there—we can change to other
coordinates and use them to complete the manifold by adding single points
there, but we cannot do better than that.

Next we take R = —2, that is, constant negative curvature. The equation
becomes f” = f, and the standard solution gives the metric as

ds® = dr? + sinh® rd¢? . (125)

The “natural” coordinate range is 0 < r < 00, 0 < ¢ < 27 and periodic in ¢.
To get to grips with what this means, we observe that—regardless of the sign
in R = £2—we can expand in a power series to investigate what goes on close
tor=0:
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3 2

ds®> = dr? + (r F ;_! +.. ) d¢? ~ dr? +r’dg? . (126)
Close to the point—indeed, close to any point—the metric is close to flat. So I
will rely on what I know about flat space. All Riemannian spaces are “locally
flat” to lowest order in an approximation scheme. This is the first observation,
and it forces us to fix 0 < ¢ < 27 and periodic in order to ensure that the space
is locally smooth, regardless of the value of R.

We can draw a picture of the sphere (R = 2). Why not a picture of R = —27
That is harder, because it is impossible to embed the entire constant negative
curvature plane in a 3-dimensional flat space. We can at most do a piece of it.
To see what goes on, consider a circle at constant distance r¢ from the origin.
Its circumference C is

2w
C= yf ds= [ fro)dd = 2nf(ro) . (127)
r=ro 0

For the sphere we get C' = 27 sinrg < 27rg while for constant negative curvature
we get C' = 2wsinhry > 27rg. So the circumference of a circle grows much
quicker with radius if the curvature is negative than in does in flat space. In a
sense a space with negative curvature has “more space” than a flat space (and
a sphere has less!).

Surfaces that have negative, but varying, curvature in some region are easy
to find. A standard example is a saddle on a horse, or the innner ring on a
torus embedded in flat space. Indeed by now you should have no difficulty in
visualizing a region around the origin for any choice of the function f(r) in eq.
(112), although it is much easier to do when f(r) < r. The reason why this
metric is easy to deal with is of course that it has a very special (diagonal and
¢-independent form). This means that the surfaces we obtain will be invariant
under rotations around the origin.

One more example may be helpful: A torus considered as surface of revolu-
tion in flat 3-space. Use cylindrical coordinates on the latter, and parametrize
the torus in terms of two angles ¢ and w, the latter occurring in

(p—a)®+22=bv & p=a+bcosu, z=bsinu. (128)
Clearly a < b and both are positive, otherwise this is not a torus. We arrive at
X =pcos¢p = (a+bcosu)cos¢d

Y =psing = (a+bcosu)sing . (129)
Z =z = bsinu

A minor calculation shows that

ds? = b*du® + (a + beosu)?dg? | (130)

30




which is well behaved everywhere (since a < b). If we set r = bu this is a metric
on our standard form, and we get the curvature scalar as

2 z 2
_2 cosy _ 2 cosu _ (131)
ba+bcosy ba+bcosu

We see that the curvature vanishes if and only if u = +7/2. Also

2w 27
/ R:/ du/ dé JgR=0, (132)
torus 0 0

where g, by definition, is the determinant of the g;;. This is the same result as
for the flat torus. In fact the integral of R over an entire closed two dimensional
surface is a topological invariant, independent of the metric.

Finally, a look at the geodesic equation. With only two non-vanishing
Christoffel symbols, as in eq. (113), it gives

P+ 7,500 =7 — [f'do (133)

!
¢+ (L%, +T% yig=¢+ 2?7-«4) : (134)
Actually you do not get the solution without a bit of work, if you want the
general solution. But if the space we are on is highly symmetric we can simplify
things. In particular, consider the sphere (f = sinr), and consider geodesics
that start from r = 0. Clearly, with these initial data the solutions are

r=o ¢ = constant, . (135)

As you see, these are Great Circles on the sphere (lines of constant longitude).
But on a sphere there is nothing special about the point described in our coor-
dinate system by r = 0. By changing coordinates we can place the origin r = 0
anywhere. Therefore all Great Circles are geodesics, and conversely. The prob-
lem is completely solved for the sphere. Notice the structure of the argument:
You have to see through the coordinate system, and think about the real Thing.

Geodesic deviation

It is time to trot out the Riemann tensor for a little useful work. Vaguely
speaking, we want to know if geodesics that start out “parallel” to each other
eventually converge from each other (as they do on a sphere), or if they diverge.
To take the vagueness away from the question, imagine a little vector £* pointing
from one geodesic (with tangent vector V¢) to the other, and move it along the
geodesic using the covariant derivative along the geodesic, Vy = V*V,. The
“acceleration” of £% is then given by
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VyVyé® =R, sVHVYER . (136)

We will derive this equation presently. But we begin by seeing what it says,
assuming it is true. In two dimensions we can use eq. (117) to simplify the
equation—that goes under the name geodesic deviation equation—to

VyVvE = SRIVV £ =€) (137)

But V - & = 0 because we choose to define £ that way, and V? = 1 because
we assume that our geodesics are parametrized by arc length. Therefore the
geodesic deviation equation in two dimensions has been simplified to

1
VyVye = R (138)

If R < 0 the acceleration of the geodesics relative to each other is positive, so
that £ will get larger and the geodesics will diverge from each other. If R > 0
they converge. In flat space there is no acceleration between straight lines, as
you knew perfectly well.

We have arrived at a clearcut meaning of curvature, as something that mea-
sures the focussing of geodesics if it is positive, and their dispersion if it is neg-
ative. It is easy to check that this fits with what actually happens on spheres
and saddles. In dimensions higher than two geodesics may converge in some di-
rections and diverge in others, because the Riemann tensor is no longer encoded
in one function only.

Now for a derivation of eq. (136). I will give a slick derivation that may be
hard to follow, but—I hope—sufficiently transparent so that you see how the
calculations almost do themselves if you know how to handle the formalism.
The setup is like this: T have a one-parameter family of geodesics. Let me call
them z%(7r;0). Here 7 is the parameter along the geodesics, and o tells you
which geodesic that you are on. I will assume that 7 and o can be used as
coordinates on a surface in space-time, swept out be the geodesics. This will be
true locally at least. Thus

Or = V%0, (139)
is the tangent vector of a geodesic, and

8y = 0, (140)

is a vector connecting nearby geodesics (as it were). I am interested in how £
changes as we move along a given geodesic.

The calculation, keeping eq. (102) and the geodesic equation (101) in mind,
starts with the observation that the vector fields commute:

V0., 6795] = 0 . (141)
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This implies that

Vﬁaﬁga _ 6'665Va — VﬁV5§°‘ _ é‘ﬂvﬂga =0. (142)

(The affine connection drops out from this particular combination of deriva-
tives.) Then the formalism takes over:

Vy Ve = VAV4(VIV,£%) = VAV4(ETV, V) =

=VPVEEV, Ve + VEEOVsV, V=

(143)
= PVVIV, VY + VPV, VaV* + VPV, V]V =
=V, (VPVaV®) + VPR, VO .
The first term is zero because of (101), so
Vv VyE® = R%, VOVPET (144)

that is, we have proved the geodesic deviation equation. And one of my points
was that once you know the formalism, lots of calculations almost do themselves.
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